摘要
研究了二维变系数非齐次热传导方程的两层绝对稳定的差分格式问题。首先运用Pade逼近导出了差分格式,给出了差分格式的截断误差;讨论了差分格式的绝对稳定性和收敛性,且收敛阶为O(2τ+h4);最后给出了数值例子,数值结果和理论结果是吻合的。
A difference scheme of high accuracy for solving the two-dimensional variable coefficient heat conduction equations is presented. Firstly, a compact difference scheme is derived by using Pade convergence and an error estimate is given in detail. Secondly, the stability and convergence of the scheme are achieved by using Fourier method. Finally, a numercial example demonstrates the theoretical results.
出处
《新乡学院学报》
2009年第1期2-4,共3页
Journal of Xinxiang University
基金
国家自然科学基础研究基金资助项目(2003CB415200)
关键词
显式差分格式
绝对稳定
截断误差
explicit difference scheme
absolute stability
truncation error