期刊文献+

波莱尔零测集理论思想研究 被引量:2

The Research on Emile Borel's Work Relative to Theory of Zero Measure Set
下载PDF
导出
摘要 以法国数学家波莱尔的有关工作为核心,重点考察了他提出零测集的思想背景,提出零测集渐近测度和稀疏度的思想演变过程、思想方法及影响。指出波莱尔在前人工作的基础上于1894年研究函数单演理论时已经有了零测集的思想,在1898年正式提出了零测集的概念,并在此基础上给出了集合测度的概念。正是在函数单演理论研究中,他认识到了零测集的重要性,开始了零测集的分类和性质研究,并在1919年提出了零测集的渐近测度的概念。波莱尔在1935年对渐近测度的概念做适当修改,提出了零测集稀疏度的概念。他为了研究零测集向量和的问题,在1948年给出了3种重要的稀疏度的定义和计算方法。这一工作对弗雷歇、马沙哈尔等人有一定影响。 Theory of zero measure set is an important and difficult question in measure theory This paper is based on Borel's work relative to zero measure set. It carefully investigates thought background of proposing zero measure set, thought process of proposing asymptotic measure and rarefaction of proposing zero measure set, and influences on M. Frechet and Jr. Marshall Hall. Based on the investigation, it points out that Borel studied the classification and properties of zero measure set during the research on monogenic function. He gave the concept of asymptotic measure in 1919 and rarefaction in 1935. In 1948, Borel gave three important methods of calculation of rarefaction in order to study the vector sum of zero measure set.
作者 王全来
出处 《自然科学史研究》 CSCD 北大核心 2009年第2期191-204,共14页 Studies in The History of Natural Sciences
基金 国家自然科学基金(项目编号:10771169) 天津师范大学博士基金(项目编号:52LX15)
关键词 波莱尔 零测集 渐近测度 稀疏度 E. Borel, zero measure set, asymptotic measure, rarefaction
  • 相关文献

参考文献54

  • 1Hawkins T. Lebesgue's Theory of Integration :Its Origins and Development [ M ]. America: AMS Chelsea Publisching, 1975.
  • 2Fyodor A M. Scenes from the History of Real Functions [ M ]. Basel, Boston, Bedin : Birkhauser Verlag, 1991.
  • 3Pier J P. Development of Mathematics 1900-1950 [ M ]. Basel, Boston, Berlin : Birkhauser Verlag, 1994.517-562.
  • 4Kline M. Mathematical Thought from Ancient to Modem Times [ M]. New York: Oxford University Press, 1972. 1040-1050.
  • 5王全来.波莱尔测度理论思想研究[J].数学的实践与认识,2007,37(22):183-189. 被引量:4
  • 6Cooke R. Uniqueness of Trigonometric Series and Descriptive Set Theory, 1870-1985 [ J ]. Archive for History of Exact Science, 1993,4:281-321.
  • 7Fourier J. La Theorie Analytique de la Chaleur[ M]. Paris: Firmin Didot,1882. 184-208.
  • 8Abel N H. Untersuchung tiber die Reihe 1+m/1x+m(m-1)(m-2)/1·2·3x^3+…[ A ]. .Euvres Completes[ C ]. Leipzig: Teubner, 1921. 219-250.
  • 9Heine H. Uber Trigonometrische Reihen[ J]. Journal fur die Reine und Angewandte Mathematik, 1870,71:353.
  • 10Cantor G. Uber Trigonometrische Reihen[ A]. Zermelo E. Gesammelte Abhandlungen Mathematichen und Philosophischen Inhalts[ M]. Berlin: Springer,1932.87-91.

二级参考文献65

  • 1Reisz F. L'evolution de la notion d'integrale depuis Lebesgue[A](Euvres completes( I )[C]. Paris: GauthierVillars, 1960: 327-340.
  • 2Hobson E W. The theory of functions of a real variable (Vol I )[M]. Cambridge: University Press. , 1927: 391.
  • 3Borel E. Noticesur les Travaux scientiques de Emile Borel (1912)[A]. (Euvres de Emile Borel( I )[C]. Paris: CNRS, 1972: 150.
  • 4Borel E. Sur la definition de 1' intfgrale define[A]. (Euvres de Emile Borel( Ⅱ )[C]. Paris: CNRS, 1972: 821--825.
  • 5Lebesgue H. Remarques sur les theoreies de la masure et de l'integration[A]. (Euvres scientifiques( I )[C]. Paris: CNRS, 1972: 311.
  • 6Borel E. Le calcul des integrales definies[A]. (Euvres de Emile Borel( Ⅱ )[C]. Paris: CNRS, 1972: 827-878.
  • 7Fyodor A M. Scenes from the history of real functions[M]. Berlin: Birkhauser Verlag, 1991: 107.
  • 8Borel E. Lecons sur les fonetions de variables reeles et les deveoppements en series de polynomes[M]. Paris: Gauthier-Villars, 1928:42.
  • 9Reisz F. Sur les Suites de fonctions mesurables[A]. (Euvres completes( I )[C]. Paris: Gauthier-Villars, 1960: 396-399.
  • 10Borel E. La theorie de la measure et la de theorie 1' integration[A]. LeCons th6orie des fonctions[C]. Paris: Gauthier-Villars, 1914: 217-257.

共引文献5

同被引文献37

  • 1王全来.波莱尔测度理论思想研究[J].数学的实践与认识,2007,37(22):183-189. 被引量:4
  • 2Markuschewitsch A I.Skizzen zur geschichte der analytischen funktionen[M].Berlin,1955:47-131.
  • 3Kolmogorov A N,Yushkevich A P.Mathematics of the 19th Century-Geometry,Analytic Function Theory[M].Boston:Birkhwuser,1996:188-267.
  • 4Beurling A.Quasi-analyticity and general distribution[M].Standford:AMS Summer Institute,1961.
  • 5Bruna J.An extension theorem of Whitney type for non-quasianalytic classes of functions[J].J London Math Soc,1980,22:495-505.
  • 6Bilodeau G G.The origin and early development of non-analytic infinitely differentiable functions[J].Archive for the History of Exact Sciences,1982,27:115-135.
  • 7Petzsche H J.On E.Borel’s theorem[J].Math Ann,1988,282:299-313.
  • 8Hermite C.Quelques points de la théorie des functions[C]//uvres de Charles Hermite(Ⅳ).Paris:Gauthier-Villars,1917:48-75.
  • 9Picard E.Sur les fonctions uniformes affectées de coupures[C]//uvres de Emile Picard(Ⅰ).Paris:CNRS,1978:91-93.
  • 10Goursat E.Cours d’analyse mathétique(Ⅱ)[M].Paris:Gauthier-Villars,1918:235-261.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部