期刊文献+

On the Largest Eigenvalue of Signless Laplacian Matrix of a Graph 被引量:4

On the Largest Eigenvalue of Signless Laplacian Matrix of a Graph
下载PDF
导出
摘要 The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate these results into the signless Laplacian matrix of a graph and obtain the similar results. The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate these results into the signless Laplacian matrix of a graph and obtain the similar results.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第3期381-390,共10页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10871204) Graduate Innovation Foundation of China University of Petroleum (No. S2008-26).
关键词 signless Laplacian matrix characteristic polynomial largest eigenvalue signless Laplacian matrix characteristic polynomial largest eigenvalue
  • 相关文献

参考文献7

  • 1HAEMERS W H, SPENCE E. Enumeration of cospectral graphs [J]. European J. Combin., 2004, 25(2): 199-211.
  • 2CVETKOVIC D M, DOOB M, SACHS H. Spectra of Graphs [M]. Academic Press, New York, 1980.
  • 3MERRIS R. Laplacian matrices of graphs: a survey [J]. Linear Algebra App_l., 1994, 197/198: 143-176.
  • 4CVETKOVIC D M, ROWLINSON P, SIMIC S K. Signless Laplacians of finite graphs [J]. Linear Algebra Appl., 2007, 423(1): 155-171.
  • 5VAN DAM E R, HAEMERS W H. Which graphs are determined by their spectrum [J]. Linear Algebra Appl., 2003, 373: 241-272.
  • 6LI Qiao, FENG Keqin. On the largest eigenvalue of a graph [J]. Acta Math. Appl. Sinica, 1979, 2(2): 167-175.
  • 7GUO Jiming. The effect on the Laplacian spectral radius of a graph by adding or grafting edges [J]. Linear Algebra Appl., 2006, 413(1): 59-71.

同被引文献33

  • 1袁西英,吴宝丰,肖恩利.树的运算及其Laplace谱[J].华东师范大学学报(自然科学版),2004(2):13-18. 被引量:5
  • 2顾新,李久平,王维成.知识流动、知识链与知识链管理[J].软科学,2006,20(2):10-12. 被引量:84
  • 3Biggs N L.Algebraic Graph Theory[M].Cambridge:Cambridge Univ Press,1974.
  • 4Cvetkovic D M,Doob M,Gutman I,et al.Recent Results in the Theory of Graph Spectra[M].Amsterdam:North-Holland,1988.
  • 5Cvetkovic D M,Doob M,Sachs H.Spectra of Graphs-Theory and Application[M].Leipzig:Johann Ambrosius Barth Verlag,1995.
  • 6Guo Jiming.A new upper bound for the Laplacian spectral radius of graphs[J].Linear Algebra Appl,2005,400:61-66.
  • 7Li Jiongsheng,Zhang Xiaodong.On Laplacian eigenvalues of a graph[J].Linear Algebra Appl,1998,285:305-307.
  • 8Cvekovic D M,Rowlinson P,Simic S K.Singless Laplacians of finite graphs[J].Linear Algebra Appl,2007,423:155-171,226-235.
  • 9Cardoso D M,Cretkovic D M,Rowlinson P,et al.A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph[J].Linear Algebra Appl,2008,429:2770-2780.
  • 10Belardo F,Marzi E M L,Simic S K.Some results on the index of unicyclic graph[J].Linear Algebra Appl,2006,416:1048-1059.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部