期刊文献+

A Note on the Monotone Product of Nuclear C^*-Algebras

A Note on the Monotone Product of Nuclear C^*-Algebras
下载PDF
导出
摘要 Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear. Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第3期485-490,共6页 数学研究与评论(英文版)
基金 the Youth Foundation of Sichuan Education Department (No.2003B017) the Doctoral Foundation of Chongqing Normal University (No.08XLB013)
关键词 monotone product GNS representations nuclear C^*-algebras. monotone product GNS representations nuclear C^*-algebras.
  • 相关文献

参考文献1

二级参考文献10

  • 1Kadison, R., Ringrose, J.: Fundamentals of the theory of Operator Algebras, Vol. Ⅰ and Ⅱ, Academic Press,Orlando, 1983 and 1986
  • 2Takesaki, M.: Theory of Operator Algebras, Vol. Ⅲ, Springer-Verlag, Berlin, 2003
  • 3Ching, W. M.: Free products of von Neumann algebras. Trans. Amer. Math. Soc., 178, 147-163 (1973)
  • 4Ge, L.: Applications of frec entropy to finite von Neumann alcgbras Ⅱ. Ann. Math., 147, 143-157 (1998)
  • 5Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅲ.Geom. Funct. Anal., 6, 172-199 (1996)
  • 6Voiculescu, D., Dykema, K., Nica, A.: Free Random Variables, CRM Monograph Serics, Vol. 1, AMS,Providence, R.I., 1992
  • 7Muraki, N.: Monotonic independence, monotonic central limit theorem and monotonic law of small numbers.Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4, 39-58 (2001)
  • 8Rordam, M., Stormer, E.: Classification of nuclear C^*-algebras.Entropy in operator algcbras, Springer-Verlag Press, Berlin, 2002
  • 9Muraki, N.: Monotonic convolution and monotonic, Levy-Hincin formula, prcprint, 2000
  • 10Barnett, L.: Free product yon Neumann algebras of type Ⅲ. Proc. AMS., 123(2), 543-553 (1995)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部