期刊文献+

Surface Sum of Heegaard Splittings

Surface Sum of Heegaard Splittings
下载PDF
导出
摘要 Suppose Mi = Vi ∪ Wi (i = 1,2) are Heegaard splittings. A homeomorphism f : F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2, where Fi ∪→ δ_Wi. In this paper we define a surface sum of Heegaard splittings induced from the Heegaard splittings of M1 and M2, and give a sufficient condition when the surface sum of Heegaard splitting is stabilized. We also give examples showing that the surface sum of Heegaard splittings can be unstabilized. This indicates that the surface sum of Heegaard splittings and the amalgamation of Heegaard splittings can give different Heegaard structures. Suppose Mi = Vi ∪ Wi(i = 1,2) are Heegaard splittings.A homeomorphism f :F1 → F2 produces an attached manifold M = M1 ∪F1=F2 M2,where Fi ■-Wi.In this paper we define a surface sum of Heegaard splittings induced from the Heegaard splittings of M1 and M2,and give a suffcient condition when the surface sum of Heegaard splitting is stabilized.We also give examples showing that the surface sum of Heegaard splittings can be unstabilized.This indicates that the surface sum of Heegaard splittings and the amalgamation of Heegaard splittings can give different Heegaard structures.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第3期558-562,共5页 数学研究与评论(英文版)
基金 the Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411069)
关键词 Heegaard splitting STABILIZED AMALGAMATION Heegaard分裂 表面 Heegaard分解 求和 F2代 不稳定 劈裂 供应量
  • 相关文献

参考文献4

  • 1QIU Ruifeng, SCHARLEMANN M. A proo? of the Gordon conjecture [J]. Adv. Math., Preprint.
  • 2BACHMANN D. Connected sums of unsmbilized Heegaard splittings are unstabilized [J]. ArXiv preprint math. GT/0404058.
  • 3QIU Ruifeng, MA Jiming. Heegaaard splittings of boundary reducible 3-Manifolds [J]. ArXiv: math.GT/0409498.
  • 4MORIMOTO K. On the super additivity of tunnel number of knots [J]. Math. Ann., 2000, 317(3): 489-508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部