期刊文献+

二阶延迟微分方程Runge-Kutta方法的稳定性

The stability of Runge-Kutta method for the second order delay differential equations
下载PDF
导出
摘要 研究二阶延迟微分方程Runge-Kutta方法的稳定性.首先,引入新变量,将二阶延迟微分方程化为一阶方程组.然后,应用Runge-Kuta方法于一阶方程组,给出了Runge-Kutta稳定的充分条件,进而得到了二阶延迟微分方程Runge-Kutta方法稳定的充分条件.最后,通过数值试验验证所得结论的正确性. The stability of Runge-Kutta method is studied for the second order delay differential equation. Firstly, the equation is converted to the first order differential systems by using variable substitution. Secondly, the Runge-Kutta methods are applied to the systems, and the sufficient conditions of stability of Runge-Kutta method of the first order differential systems are given, so the sufficient conditions of the second order delay differential equation are obtained. Finally, the numerical test is given to verify the conclusion.
作者 范振成
机构地区 闽江学院数学系
出处 《闽江学院学报》 2009年第2期20-23,共4页 Journal of Minjiang University
关键词 二阶延迟微分方程 RUNGE-KUTTA方法 稳定性 second order delay differential equations Runge-Kutta method stability
  • 相关文献

参考文献3

  • 1Nicola Guglielmi,Ernst Hairer. Order stars and stability for delay differential equations[J] 1999,Numerische Mathematik(3):371~383
  • 2Guang-Da Hu,Taketomo Mitsui. Stability analysis of numerical methods for systems of neutral delay-differential equations[J] 1995,BIT Numerical Mathematics(4):504~515
  • 3T. Koto. A stability property ofA-stable natural Runge-Kutta methods for systems of delay differential equations[J] 1994,BIT(2):262~267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部