期刊文献+

基于彩色数字相机的光谱反射率重建方法研究 被引量:8

Study of Approaches to Spectral Reflectance Reconstruction Based on Digital Camera
下载PDF
导出
摘要 如何在给定照明条件和观测条件的情况下,由彩色数字相机的响应值重建物体表面光谱反射率,仍是颜色科学与工程领域一个尚待解决的重要课题。文章使用奇异值分解的方法将光谱反射率近似为若干基向量的线性组合,求得组合系数,然后使用相机输出数据与组合系数训练人工神经网络,使之能够准确的模拟相机输出与组合系数之间的非线性关系,最后采用经训练的神经网络,与基向量结合,由相机输出准确的重建物体表面的光谱反射率。实验结果显示,与线性近似的方法相比,使用该方法对标准Munsell色块进行反射率重建,重建误差减小了约67%,具有高精度、易实现、易操作的特点,可用于对重建精度要求较高的诸多领域。 It is still challenging to reconstruct the spectral reflectance of a surface using digital cameras under given luminance and observation conditions. A new approach to solving the problem which is based on neural network and basis vectors is proposed. At first, the spectral reflectance of the sample surface is measured by spectrometer and the response of an digital camera is recorded. Then the reflectance is represented as a linear combination of several basis vectors by singular value decomposition (SVD). After that, a neural network is trained so that it is able to approximate the relationship between the camera responses and the coefficients of basis vectors accurately. In the end, the spectral reflectance can be reconstructed based on the neural network and basis vectors. In the present paper, the authors reconstructed the spectrum reflectance based on neural network and basis vectors. Compared with other traditional methods, neural network expands the space of unknown function F(S) from linear functions to more general nonlinear functions, which gives more accurate estimation of the coefficients ak and better reflectance reconstruction. Results show that the reflectance of standard Munsell color patch (Matte)can be reconstructed successfully with mean of RMS which is 0. 023 4. Compared with linear approximation method, reconstruction of standard Munsell color patch (Matte)using this approach reduces the reconstruction error by 67%. Since the neural network can he implemented by Matlab neural network toolbox, this method can be easily adopted in many other cases. Therefore we conclude that this approach has advantages of higher accuracy, easy implementation and adaptation, thus can be used in many applications.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第5期1176-1180,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(60678052) 国家“863”计划项目(2006AA10Z210)资助
关键词 光谱反射率重建 神经网络 基向量 非线性 Spectral reflectance reconstruction Neural network Basis vectors Nonlinearity
  • 相关文献

参考文献14

  • 1Hardeberg J Y.Aequisiuion and Reproduction of Colored Images:Colorimetric and Multispectral Approaches.France:Ecole Supe'rieur Nationale des Tele'communications,1999.
  • 2Dupont D.Color Research & Application,2002,27(2):89.
  • 3Raimondo Schettini,Silvia guffi.Neural Computing and Applications,2007,16(1):69.
  • 4Demuth H,Bcah M,Hagan M.Neural Network Toolbox 5 User's Guide,The Math Works,Inc.,2007.
  • 5何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-853. 被引量:148
  • 6Johnson Tony.Displays,1996,16(4):183.
  • 7Cheng Fang-Hsuan,Yang Chih-Yuan.Proc.SPIE,2000,4080:167.
  • 8Yamaguchi Masahiro et al.Proc.SPIE,2002,4663:15.
  • 9Betas R S.Challenges for Color Science in Multimedia Imaging.In Conference Proceedings,CIM'98,Derby,UK,Colour Imaging in Multimedia,1998.123.
  • 10Ohya Yuri,Obi Takashi,Yamaguchi Masahiro et al.Proc.SPIE,1998,3335:263.

二级参考文献10

共引文献147

同被引文献87

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部