期刊文献+

悬浮液雾化进样感耦等离子体基本参数研究--Ⅱ等离子体电子密度测定 被引量:3

Study of Fundamental Parameters of Inductively Coupled Plasma for Slurry Nebulization——Electron Density Determination
下载PDF
导出
摘要 研究了悬浮液雾化进样感耦等离子体原子发射光谱基本参数-等离子体电子密度的测定。实验使用Stark效应常用的谱线Hβ线来计算等离子体电子密度。测定结果表明悬浮液雾化进样同水溶液雾化进样感耦等离子体原子发射光谱时等离子体电子密度没有发生显著的变化,数值基本上为1015数量级。固含量高达10%TiO2悬浮液雾化进样等离子体原子发射光谱,电子密度测定结果仅有微小的降低。高固含量悬浮液雾化进样等离子体原子发射光谱没有显著地影响等离子体电子密度,有助于使用高固含量悬浮液雾化进样等离子体原子发射光谱来进行痕量元素分析测定。 The electron density of the plasma for slurry nebulization inductively coupled plasma emission spectrometry was determined and reported in the present paper. The Stark broadening method of Hβ line (486. 1 nm) was chosen and used to determine the electron density of the plasma for nebulization into the inductively coupled plasma with both the aqueous solution and different concentration titanium slurry. There are approximately the same plasma electron density results of 10^15 cm^-3 for the two nebulization ways. The experiment verified that the plasma electron density only shows a litter decrease with 10% TiO2 suspension nebulization into the inductively coupled plasma. This means that the plasma electron density does not change remarkably with high content suspension nebulization into the inductively coupled plasma emission spectrometry instrument. It will help trace elements determination by using high concentration suspension nebulization into the inductively coupled plasma emission spectrometry instrument.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第5期1402-1404,共3页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(20705036) 中国科学院上海硅酸盐所科技创新项目(SCX0626)资助
关键词 悬浮液进样 感耦等离子体光谱 等离子体电子密度 Slurry introductiom Inductively coupled plasma emission spectrometry, Plasma electron density
  • 相关文献

参考文献12

二级参考文献59

  • 1孙静,高濂,郭景坤.纳米Y-TZP形成稳定浆料的流变性质[J].无机材料学报,1997,12(1):35-40. 被引量:22
  • 2Brenner I B, Zander A T. Spectrochim. Acta, Part B, 2000, 55: 1230.
  • 3Silva C S, Blanco T, Nobrega J A. Spectrochim. Acta, Part B, 2002, 57: 29.
  • 4Logothetis E M. Ceram. Eng. Sci. Prog., 1980, 1: 281.
  • 5Broekaert J A C, Graule T, Jenett H, Tolg G., Tschopel P. Fresenius J. Anam. Chem., 1989, 332: 825.
  • 6Peng Tianyou, Du Pingwu, Hu Bin, Jiang Zucheng. Analytica Chemica Acta, 2000, 421: 75.
  • 7Schwitzgebel J, G.Ekerdt J, Gerischer H, Heller A. J. Phys. Chem., 1995, 99: 5633.
  • 8Nishimoto S, Ohtani B, Kajiwara H, Kagiya T. J. Chem. Soc. Faraday Trans., 1985, 81: 61.
  • 9Zhang Z B, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem., 1998, 102: 10871.
  • 10Karakitsou K E, Verkios X E. J. Phys. Chem., 1993, 97: 1184.

共引文献13

同被引文献775

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部