期刊文献+

一种新的粗糙Leader聚类算法 被引量:6

New Rough Leader Clustering Algorithm
下载PDF
导出
摘要 聚类是数据挖掘领域重要的研究方向。在众多的聚类算法中,Leader算法运用很广泛,但Leader算法没有考虑到聚类分析中内在的不确定性。对Leader算法做了相应改进,加入了粗糙集和粒计算的思想,使其能够处理聚类中固有的不确定性,得到更合理的聚类结果。最后,通过实验证明了该算法的优越性。 Clustering is a major research orientation in data mining. Among all the clustering algorithms, leader algorithm is widely used, but it fails to take into consideration the inherent uncertainty involved in clustering analysis. This paper proposed an improved leader algorithm based on rough Set and granular computing. The novel leader algorithm can deal with the intrinsic uncertainty in clustering analysis and make the clustering results more reasonable. Finally, the superiority of the new rough Leader algorithm is proved by experimentation.
出处 《计算机科学》 CSCD 北大核心 2009年第5期203-205,219,共4页 Computer Science
基金 国家自然科学基金资助项目(60475019) 国家自然科学基金资助项目(60775036) 2006年博士学科点专项科研基金(20060247039)资助
关键词 聚类 Leader算法 粗糙集 粒计算 Clustering, Leader algorithm, Rough set, Granular computing
  • 相关文献

参考文献12

  • 1HAN JW,KAMBER M.Data mining concepts and techniques[M].北京:机械工业出版社,2001.158-161.
  • 2Thcodoridis S,Koutroumbas K.Pattern Recognition[M].李晶皎,译.北京:电子工业出版社,2004
  • 3Spath H.Cluster Analysis Algorithms for Data Reduction and Classification of Objects[M].Chichester:Ellis Horwood Limited,1980
  • 4Gowda K C,Diday E.Symbolic Clustering Using a New Dissimilarity Measure[J].Pattern Recognition,1991,24(6):567-578
  • 5Asharaf S,Murty M N,Shevade S K.Rough Set Based Incremental Clustering of Interval Data[J].Pattern Recognition Letters,2006,27(6):515-519
  • 6Pawlak Z.Rough Sets[J].International Journal of Computer and Information Sciences,1982,11 (2):341-356
  • 7王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 8Lin T Y,Zadeh L A.Special Issue on Granular Computing and Data Mining[J].International Journal of Intelligent Systems,2004,19(7):565-566
  • 9苗夺谦,王国胤,姚一豫,等.粒计算:过去、现在和展望[M].北京:科学出版社,2007
  • 10Blake C L,Merz C J.UCI Repository of Machine Learning Database[EB/OL].2007.http://archive,ics.uci.edu/ml

二级参考文献8

  • 1C. C. Aggrawal, P. S. Yu. Finding generalized projected clustersin high dimensional spaces. The SIGMOD'00, Dallas, 2000.
  • 2M. Dash, H. Liu. Feature selection for clustering. The PAKDD-00, Kyoto, 2000.
  • 3F. Sebastiani. Machine learning in automated text categorization.ACM Computin Surveys, 2002, 34(1): 1--47.
  • 4Y. Yang, J. O. Pedersen. A comparative study on featureselection in text categorization. The ICML97, Nashville, 1997.
  • 5M. Rogati, Y. Yang. High performance feature selection for text categorization. The CIKM-02, Mclean, 2002.
  • 6L. Tao, L. Shengping, C. Zheng, et al.An evaluation on feature selection for text clustering. The ICML03, Washington,2003.
  • 7Zdzis?aw Pawlak. Rough sets[J] 1982,International Journal of Computer & Information Sciences(5):341~356
  • 8陆玉昌,鲁明羽,李凡,周立柱.向量空间法中单词权重函数的分析和构造[J].计算机研究与发展,2002,39(10):1205-1210. 被引量:126

共引文献305

同被引文献66

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部