期刊文献+

tRNA序列的进化网络研究 被引量:1

THE EVOLUTIONARY NETWORK STUDY OF tRNA SEQUENCES
原文传递
导出
摘要 根据tRNA序列的反密码子,把3420条tRNA序列分成了21组,其中包括20组氨基酸及1组Stop。通过tRNA序列的相似度构建了1组整体网络和21组子网络,并计算了它们在不同相似度下的平均度、平均聚类系数以及平均最短路径。通过分析、比较和讨论网络中的三个重要参数,进一步说明点突变是tRNA序列进化的重要机制,并反映了它们的进化近似符合中性理论,且在同一组氨基酸和Stop内的tRNA序列在进化历史上的同源关系更密切;同时表明了tRNA序列在进化过程中具有自相似性。 According to the different anticodons of tRNA sequences, 3420 tRNA sequences were divided into 21 groups, including 20 groups of amino acids and one group of Stop. Networks were constructed by the sequences similar degree, including one whole tRNAs network and 21 subnetworks. The average degree and the average clustering coefficient were calculated, as well as the average shortest path in different networks based on the different similar degree. After analyzing, comparing and discussing three important parameters in the different networks, on one hand, it is further indicated that the point mutation of tRNA sequences is the important evolutionary mechanism and the evolution of tRNA sequences approximately accorded with the neutral theory; on the other hand, it is also reflected that tRNA sequences have closer homologous relationships in the evolutionary history during the same groups of the amino acids and Stop, and they have the self-similarity property in the process of evolution.
出处 《生物物理学报》 CAS CSCD 北大核心 2009年第2期117-124,共8页 Acta Biophysica Sinica
基金 广西自然科学基金项目(科自0728003)~~
关键词 tRNA序列 反密码子 相似度 网络 tRNA sequences Anticodon Similar degree Network
  • 相关文献

参考文献9

  • 1Brahmachari V, Ramakrislman T. Modified bases in transfer RNA. J Biosci, 1984,6:577
  • 2Osawa S, Jukes TH. Codon reassignment (Codon Capture) in evolution. Journal of Molecular Evolution, 1989,28:271-278
  • 3Rodin S, Ohno S, Rodin A. Transfer RNA with complementary anticodons: could they reflect early evolution of discriminative genetic code adaptors? Proc Natal Acad Sci USA, 1993,90:4723-4729
  • 4Jermiin LS, Graur D, Lowe RM, Crozier RH. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J Mol Evol, 1994,39: 160-173
  • 5Saks ME, Sampson JR, Abelson J. Evolution of a transfer RNA gene through a point mutation in the anticodon. Science, 1998,279:1665-1667
  • 6O'Sullivan JM, Davenport JB, Tuite MF. Codon reassignment and the evolving genetic code: problems and pitfalls in post-genome analysis. Trends in genetics, 2001,17:20-22
  • 7Wei FP, Meng M, Li S, Ma HR. Comparing two evolutionary mechanisms of modem tRNAs. Molecular Phylogenetics and Evolution, 2006,38:1-11
  • 8Song N, Joseph JM, Davis GB, Durand D. Sequence similarity network reveals common ancestry of multidomain proteins. Computational Biology, 2008,4:1-19
  • 9韦芳萍,蓝贞雄.利用复杂网络来研究tRNA序列的进化[J].广西大学学报(自然科学版),2007,32(B09):244-252. 被引量:2

二级参考文献16

  • 1Weaver RObert F.Molecular BiologY (2nd.ed)[M].New York:McGraw-HiH Companies,2001,630.
  • 2Robert M,Farber.A mutual information analysis of tRNA sequence and modification patterns distinctive of species and phylogenetic domain.“Biocomputing:Proceedings of the 1996 Pacific symposium”[M].Singapore.World Scientific pubishing Co,1996,96.
  • 3Himanshu Agrawal.Extrem self-organization in networks constructed from gene expression data[J].Physical review letters,2002,89(26):2687.
  • 4Stefan Wuchty.Scale-free behavior in Protein domain networks[J].Mol Biol E,2001,18(9):1694.
  • 5Stefan Wuchty.Small-worlds in RNA structures[J].Nucleic Acids Research,2003,31(3):1108.
  • 6Jeong H,Mason S P,Barabási A L,et al.Lethality and centrality in protein networks[J].Nature (London),2001,411:41.
  • 7Erds P,Rényi A.On the evolution of random graphs[J].Publ Math Inst Hung Acad Sci,1960,5:17.
  • 8WATTS D,StROGATZ S.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440.
  • 9Barabási A,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509.
  • 10Eigen M,Schuster P.The Hypercycle:A Principle of Natural Self-Organization[M].Springer Verlag,1979,123.

共引文献1

同被引文献8

  • 1Agrawal H.,2002,Extreme self-organization in networks constructed from gene expression data,Physical Review Letters,89(26):268702.
  • 2Hu R.,and Wang B.,2001,Statistically significant strings are related to regulatory elements in the promoter region of Saccha-romyces cerevisiae,Physica A:Statistical Mechanics and its Applications,290(3-4):464-474.
  • 3Qi J.,Wang B.,and Hao B.L.,2004,Whole proteome prokaryote phylogeny without sequence alignment:A K-string composition approach,J.Mol.Evol.,58(1):1-11.
  • 4Farber R.M.,1996,A mutual information analysis of tRNA sequence and modification patterns distinctive of species and phylogenetic domain,Biocomputing:Proceedings of the 1996 Pacific symposium,World Scientific pubishing Co,Singapore,pp.1-2.
  • 5Ragan M.A.,2001,Detection of lateral gene transfer among microbial genomes,Curr.Opin.Gen.Dev.,11(6):620-626.
  • 6Sprinzl M.,Horn C.,Brown M.,Ioudovitch A.,and Steinberg S.,1998,Compilation of tRNA sequences and sequences of tRNA genes,Nucleic Acids Research,26(1):148-153.
  • 7Wuchty S.,2001,Scale-free behavior in Protein domain networks,Mol.Biol.Evol.,18(9):1694-1702.
  • 8Xu Z.,and Hao B.L.,2009,cvTree update:a newly designed phylogenetic study platform using composition vectors and whole genomes,Nucleic Acids Research,37(2):W174-W178.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部