期刊文献+

脑机接口在线识别左右手运动想象的脑电信号分析(英文)

Electroencephalogram recognition of imaginary right and left hand movements by brain-computer interface
下载PDF
导出
摘要 采用脑机接口2003竞赛中Graz科技大学提供的脑电数据,用小波包分解获取8~16 Hz 脑电信号,计算 C3,C4 电极脑电信号的功率谱峰值和对应频率作为组合脑电特征向量,运用时变线性分类算法对运动意识任务运行分类。对 140 次实验的测试样本数据分析,最大分类正确率可达 89.29%,最大互信息和信噪比分别为0.622 8bit 和1.3713。提示C3,C4 电极 8~16 Hz 脑电信号功率谱峰值和对应的频率能很好地反映左右手运动想象脑电特征的变化,与事件相关去同步/事件相关同步现象变化一致,可在线识别左右手想象运动。 Based on the peak value of power spectral density (PPSD) and corresponding frequency (CF), an approach that performs electroencephalogram (EEG) feature extraction during imaginary right and left hand movements was proposed. The data were gained from brain computer interface competition in 2003 provided by Graz University of Technology. The EEG signals between 8 -16 Hz were decomposed by db3 wavelet packet at three levels. The PPSD and CF of electrodes C3 and C4 were defined as the EEG feature vectors and calculated respectively. The left and right hand motor imaginary tasks were distinguished by the time-variable linear classifier. The proposed method was applied to the test data for 140 trials. The satisfactory results were obtained with the highest classification accuracy 89.29%. The maximum mutual information was 0.622 8 bit, and the signal-to-noise ratio (SNR) was 1.371 3. The PPSD and its CF on electrodes C3 and C4 between 8 and 16 Hz were coincident with event-related desynchronization (ERD) and event-related synchronization (ERS). This method is simple, quick, and promising for on-line brain computer interface system.
作者 任亚莉
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2009年第17期3370-3374,共5页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 Supported by:Scientific Research Project for Master's Supervisor in Gansu Provincial Higher Education Institutions,No.0710-05~~
  • 相关文献

参考文献6

二级参考文献53

  • 1裴晓梅,郑崇勋,宾光宇.基于多通道脑电特征运动意识任务的分类[J].西安交通大学学报,2005,39(8):904-907. 被引量:10
  • 2吴小培,叶中付.基于脑电四阶累积量的运动意识分类研究[J].生物物理学报,2005,21(5):364-370. 被引量:11
  • 3李坤,褚蕾蕾,朱世东,吴小培.基于mu节律能量的运动意识分类研究[J].计算机技术与发展,2006,16(8):157-159. 被引量:18
  • 4张爱华,赵予晗.相同步及支持向量机在意识任务识别中的应用[J].甘肃科学学报,2006,18(3):59-63. 被引量:7
  • 5Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
  • 6Pfurtscheller G, Muller G R, Pfurtscheller J. 'Thought'-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia [J]. Neuroscience Letters, 2003, 351(1):22-36.
  • 7Schlogl A, Lugger K, Pfurtscheller G. Using adaptive autoregressive parameters for a brain-computer-interface experiment [A]. The 19th Annual International Conference IEEE/EMBS, Chicago,USA,1997.
  • 8Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement [J]. Electroencephalography and Clinical Neurophysiology, 1997, 103(6): 642-651.
  • 9Wackermann J. Towards a quantitative characterization of functional states of the brain: from the non-linear methodology to the global linear description [J]. Int J Psychophysiol, 1999, 34(1): 65-80.
  • 10Pfurtscheller G, da Silva Lopes F H. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(11):1 842-1 857.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部