期刊文献+

基于文本的安全过滤研究

Security Filtering Technology Research Base on Content
下载PDF
导出
摘要 研究比较了文本检索与安全过滤的异同,以文本过滤为手段,借鉴文本检索的一些方法,在安全过滤环境中,正例文本和反例文本的特征向量非常相似的情况下,提出了一种有效的算法,过滤掉会对社会造成危害的非法网页。 This article researched the similarities and differences between text retrieval and security filtering first, put forward a general model of content based security filtering. In the case that characteristic vectors in positive examples and negative examples were very similar, we set up an effective algorithm to filter out illegal website which would harm to our society.
作者 杨敏 宋晖
出处 《计算机安全》 2009年第5期4-6,共3页 Network & Computer Security
关键词 文本过滤 安全过滤 信息增益 贝叶斯分类 Context Filtering, Security Filtering, Informstion Gain,Bayes classification
  • 相关文献

参考文献3

二级参考文献23

  • 1赵炜,李生红,苏贵洋,闫飞利.色情网页过滤系统的设计与实现[J].信息安全与通信保密,2004,26(10):105-107. 被引量:2
  • 2Belkin N J, Croft W B. Information filtering and information retrieval: two sides of the same coin? [J]. Communications of the ACM, 1992, 35(12):29-37.
  • 3Waldman M, Rubin A, Cranor L. Publius: a robust, tamper-evident, censorship-resistant web publishing system[A]. Proc of the 9th USENIX Security Symposium[C]. Denver, USA: [s.n.], 2000. 59-72.
  • 4Mladenic D. Text-learning and related intelligent agents: a survey[J]. IEEE Intelligent Systems, 1999, 14(4) 44-54.
  • 5Yang Y. Expert network: effective and efficient learning from human decisions in text categorization and retrieval[A]. In 17th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'94)[C]. CA USA: [s.n.], 1994. 13-22.
  • 6Cheeseman P, Kelly J, Self M, et al. Autoclass: a bayesian classification system[A]. Proc Fifth Int Conf on Machine Learning[C]. San Mateo, CaJifornia: Morgan Kaufmann, 1988. 54-64.
  • 7Apte C, Damerau F, Weiss S. Text mining with decision rules and decision trees[A]. Proceedings of the Conference on Automated Learning and Discovery[C]. CMU, USA: [s.n.], 1998. 62-68.
  • 8Wiener E, Pedersen J O, Weigend A S. A neural network approach to topic spotting[A]. Proceedings of the Fourth Annual Symposium on Document Analysis and Information Retrieval (SDAIR'95)[C]. Las Vegas, USA: ISRI, Univ of Nevada, 1995. 58-62.
  • 9Thorsten J. Text categorization with support vector machines: learning with many relevant features[A]. European Conference on Machine Learning (ECML)[C]. Dortmund, German: Springer, 1998. 137-142.
  • 10The effects of pornography and Sexual Messages. [EB/OL]National coalition for the protection of children & familes, cicinnati, ohi. http://www. nationalcoalition.org.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部