期刊文献+

三三次长方体有限元的超收敛 被引量:2

原文传递
导出
摘要 本文首先介绍了三维投影型插值算子,并通过这个算子导出了三三次长方体有限元的弱估计.然后,利用离散导数Green函数的W2,1半范估计和弱估计证明了有限元uh的梯度和三三次投影型插值Πh3u的梯度在逐点意义下有超逼近.最后,将这种超逼近用于超收敛分析并导出了有限元的整体超收敛估计。
出处 《中国科学(A辑)》 CSCD 北大核心 2009年第5期633-645,共13页 Science in China(Series A)
基金 宁波市自然科学基金(批准号:2008A610020) 国家自然科学基金(批准号:10671065) 湖南省教育厅(批准号:07C576,03C212)资助项目
  • 相关文献

参考文献2

二级参考文献38

  • 1J H Brandts, M. Krizek, Superconvergence of tetrahedral quadratic finite elements, (to appear).
  • 2Q D Zhu, QI Lin, Superconvergence Theory of the Finite Element Methods (in Chinese), Hunan Science and Technology Press, Hunan, China, 1989.
  • 3A H Schatz, L B Wahlbin, Interior maximum norm estimates for finite element methods, Math.Comp., 31(1977), 414-442.
  • 4P Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical Solution of Partial Differential Equations Ⅲ (B. Hubbard, Editor)Academic Press, New York, 1976, 207-274.
  • 5A H Schatz, A weak discrete maximum principle and stability of the finite element method in L^∞ on plane polygonal domains. I, Math. Gomp., 34 (1980), 77-91.
  • 6C M Chen, Y Q Huang, The W^1,p stability of tiae finite element approximation for the elliptic problem (in Chinese), Hunan. Annals. Math., 6 (1986), 81-89.
  • 7J H Bramble, J A Nitsche, A H Schatz, Maximum-Norm interior estimates for Ritz-Galerkin methods, Math. Comp., 29 (1975), 677-688.
  • 8A B Andreev. Error estimate of type superconvergence of the gradient for quadratic triangular elements. C R Acad. Bulgare Sci., 36 (1984), 1179-1182.
  • 9A B Andreev and R D Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods Partial Differential Equations, 4 (1988), 15-32.
  • 10F A Bornemann, B Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problemsin two and three space dimensions, SIAM J. Numer. Anal., 33:3 (1996), 1188-1204.

共引文献8

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部