期刊文献+

面向数据库应用的隐私保护研究综述 被引量:221

Privacy Preservation in Database Applications:A Survey
下载PDF
导出
摘要 随着数据挖掘和数据发布等数据库应用的出现与发展,如何保护隐私数据和防止敏感信息泄露成为当前面临的重大挑战.隐私保护技术需要在保护数据隐私的同时不影响数据应用.根据采用技术的不同,出现了数据失真、数据加密、限制发布等隐私保护技术.文中对隐私保护领域已有研究成果进行了总结,对各类隐私保护技术的基本原理、特点进行了阐述,还详细介绍了各类技术的典型应用,并重点介绍了当前该领域的研究热点:基于数据匿名化的隐私保护技术.在对已有技术深入对比分析的基础上,指出了隐私保护技术的未来发展方向. As the emergence and development of database applications such as data publishing and data mining, a challenge to the database community is to preserve data privacy and prevent sensitive information from disclosure. Privacy-preserving techniques should be conducive to the applications while preserving data privacy. Based on different principles, various privacy-preserving techniques are developed, such as distortion, encryption and limited distribution. This paper surveys the state of the art of privacy preservation techniques for database applications. The mechanisms and characteristics of various techniques are described, while focus is put on data anonymization, which is a hot topic in the field. Following a comprehensive comparison and analysis of existing techniques, future research directions are highlighted.
出处 《计算机学报》 EI CSCD 北大核心 2009年第5期847-861,共15页 Chinese Journal of Computers
基金 国家自然科学基金项目(60873070)资助
关键词 数据库应用 隐私保护 数据挖掘 数据发布 随机化 多方安全计算 匿名化 database applications privacy preservation data mining data dissemination randomization secure multi-party computation anonymization
  • 相关文献

参考文献73

  • 1Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd Edition, San Francisco: Morgan Kaufmann Publishers, 2006
  • 2Agrawal D, Aggarwal C C. On the design and auantification of privacy preserving data mining atgorithms//Proceedings of the Symposium on Principles of Database Systems (PODS). Santa Barbara, California, USA, 2001:247-255
  • 3Verykios V S, Bertino E, Fovino I N, Provenza I N, Saygin Y, Theodoridis Y. State-of-the-art in privacy preserving data mining. ACM SIGMOD Record, 2004, 3(1): 50-57
  • 4Agrawal R, Srikant R. Privacy preserving data mining//Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD). Dallas, Texas, 2000:439-450
  • 5Clifton C, Kantarcioglu M, Vaidya J. Defining privacy for data mining//Proceedings of the National Science Foundation Workshop on Next Generation Data Mining. Baltimore, MD, USA, 2002:126-133
  • 6Zhang N, Zhao W. Distributed privacy preserving information sharing//Proceedings of the 31st Very Large Data Bases (VLDB) Conference. Trondheim, Norway, 2005:889-900
  • 7Machanavajjhala A, Gehrke J, Kifer D, Venkitasubramaniam M. l-diversity: Privacy beyond k-anonymity//Proceedings of the 22nd International Conference on Data Engineering (ICDE). Atlanta, Georgia, USA, 2006:24-35
  • 8Xiao X, Tao Y. Personalized privacy preservation//Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD). Atlanta, Georgia, USA, 2006:229-240
  • 9Xiao X, Tao Y. m-Invariance: Towards privacy preserving re-publication of dynamic datasets//Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD). Beijing, China, 2007:689-700
  • 10Directive 95/46/ec of the European parliament and of the council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data. Official Journal of the European Communities, 1995, No Ⅰ. (281): 31-50

二级参考文献89

  • 1罗文俊,李祥.多方安全矩阵乘积协议及应用[J].计算机学报,2005,28(7):1230-1235. 被引量:34
  • 2Rakesh Agrawal.Data mining:Crossing the chasm.The 5th Int'l Conf.Knowledge Discovery in Databases and Data Mining,San Diego,California,1999.
  • 3Rakesh Agrawal,Ramakrishnan Srikant.Privacy-preserving data mining.The ACM SIGMOD Conf.Management of Data,Dallas,Texas,2000.
  • 4Yehuda Lindell,Benny Pinkas.Privacy preserving data mining.In:Advances in Cryptology-Crypto.Berlin:Springer-Verlag,2000.36~ 54.
  • 5Dakshi Agrawal,Charu C.Aggarwal.On the design and quantification of privacy preserving data mining algorithms.The 20th Symposium on Principles of Database Systems,Santa Barbara,California,2001.
  • 6Wenliang Du,Zhijun Zhan.Using randomized response techniques for privacy-preserving data mining.The 9th ACM SIGKDD Int'l Conf.Knowledge Discovery in Databases and Data Mining,Washington,D.C.,2003.
  • 7L.F.Cranor,J.Reagle,M.S.Ackerman.Beyond concern:Understanding net users' attitudes about online privacy.AT&T Labs-Research,Tech.Rep.,1999.http://www.research.att.com/library/trs/TRs/99/99.4.3/report.htm.
  • 8J.R.Quinlan.C4.5:Programs for Machine Learning.San Mateo,CA:Morgan Kaufmann,1993.
  • 9Rakesh Agrawal,Sakti Ghost,Tomasz Imielinski,et al.An interval classifier for database mining applications.In:Proc.VLDB Conf.,Vancouver,British Columbia,Canada,1992.
  • 10L.Breiman,J.H.Friedman,R.A.Olshen,et al.Classification and Regression Trees.Boca Raton,Florida:CRC Press,1984.

共引文献159

同被引文献2094

引证文献221

二级引证文献2257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部