期刊文献+

基于视频的人脸识别研究进展 被引量:84

State-of-the-Art on Video-Based Face Recognition
下载PDF
导出
摘要 近年来基于视频的人脸识别已成为人脸识别领域最为活跃的研究方向之一.如何充分利用视频中人脸的时间和空间信息克服视频中人脸分辨率低,尺度变化范围大,光照、姿态变化比较剧烈以及时常发生遮挡等困难是研究的重点.文中对近期(主要近5年)基于视频的人脸识别研究进行了详细的介绍和讨论,在对相关方法分类的基础上,分析了各类方法中典型技术的优缺点,并概况介绍了常用的视频人脸数据库和实验结果,最后展望了基于视频人脸识别未来的发展方向和趋势. Recently, video-based face recognition has become one of the hottest topics in the domain of face recognition. How to fully utilize both spatial and temporal information in video to overcome the difficulties existing in the video-based face recognition, such as low resolution of face images in video, large variations of. face scale, radical changes of illumination and pose as well as occasionally occlusion of different parts of faces, is the focus. The paper reviews most existing typical methods for video-based face recognition (especially for the last 5 years) and analyses their respective pros and cons. Two commonly used video face databases and some experimental results are given. The prospects for future development and suggestions for further research works are put forward in the end.
作者 严严 章毓晋
出处 《计算机学报》 EI CSCD 北大核心 2009年第5期878-886,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60872084) 教育部高等学校博士学科点专项科研基金(SRFDP-20060003102)资助~~
关键词 模式识别 人脸识别 基于视频的人脸识别 进展 pattern recognition face recognition video-based face recognition progress
  • 相关文献

参考文献62

  • 1Chellappa R, Wilson C, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE, 1995, 83(5):705-740
  • 2Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition: A literature survey. ACM Computation Survey, 2003, 35(4): 399-458
  • 3Li S Z, Jain A K. Handbook of Face Recognition. New York: Springer, 2005
  • 4Zhou S, Chellappa R. Beyond a single still image: Face recognition from multiple still images and videos//Zhao W et al eds. Face Processing: Advanced Modeling and Methods. New York: Academic Press, 2005
  • 5Shakhnarovich G, Fisher J W, Darrell T. Face recognition from long-term observations//Proceedings of the European Conference on Computer Vision. Bari, 2002:851-868
  • 6Liu X M, Chen T, Thornton S M. Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognition, 2003, 36(9): 1945-1959
  • 7Liu X M, Chen T. Video-based face recognition using adaptive hidden Markov models//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Madison, 2003:340-345
  • 8Lee K C, Ho J, Yang M H, Kriegman D. Video-based face recognition using probabilistic appearance manifolds//Proceedings of the International IEEE Conference on Computer Vision and Pattern Recognition. Madison, 2003:313-320
  • 9Lee K C, Ho J, Yang M H, Kriegman D. Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, 2005, 99 (3): 303-331
  • 10Zhou S, Krueger V, Chellappa R. Probabilistic recognition of human faces from video. Computer Vision and Image Understanding, 2003, 91(1): 214-245

同被引文献702

引证文献84

二级引证文献455

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部