期刊文献+

基于分类权与质心驱动的无监督学习算法 被引量:2

An Unsupervised Learning Algorithm Based on Classification Weight and Mass Center Driving
下载PDF
导出
摘要 为了充分挖掘隐藏在样本向量中的空间信息和知识信息:用聚类点代替类均值,把提取指标对聚类所做贡献的量化值定义为指标分类权;用分类权定义样本点与聚类点的加权距离,使之作为样本与类之间的相似性度量更具合理性,即将加权距离转化为样本隶属度.为了消除序贯算法产生的随机性,用样本的K类隶属度作为点质量的样本质点组的质心,修正当前的K类聚类点,由此建立基于分类权和质心驱动的搜索聚类点的迭代算法.IRIS数据检验结果表明,新算法的聚类效果与稳定性都优于已有的无监督学习方法. In order to find space information and knowledge in sample points: when clustering point replaces classmean clustering, the quantized value that describes index contribution to clustering is abstracted, then index classification weight is defined. By using classification weight, weighted distance between sample point and clustering point is defined. As similarity measurement between sample point and class, this distance is more reasonable. Transform weighted distance into sample membership. In order to avoid randomicity caused by sequential algorithm, the mass center of the sample point set is utilized to modify the present clustering points of K classes and the sample points use K memberships as their masses. From this, an iterative algorithm based on classification weight and mass center driving for searching clustering points is proposed. IRIS is used to verify this algorithm and the result shows that clustering effect and stability are superior to the existing unsupervised learning algorithms.
出处 《自动化学报》 EI CSCD 北大核心 2009年第5期526-531,共6页 Acta Automatica Sinica
基金 国家自然科学基金(60474019) 河北省自然科学基金(F2005000482)资助~~
关键词 无监督数据 聚类点聚类 分类权 加权距离 质心 Unsupervised data, clustering method based on clustering point, classification weight, weighted distance, mass center
  • 相关文献

参考文献6

  • 1Vapnik V N.The Nattwe of Statistical Learmng Theory.New York:Springer-Verlag,1995
  • 2Kohonen T,Oja E,Simula O,Visa A,Kangas J.Engineering applications of the self-organizing map.Proceedings of the IEEE,1996,84(10):1358-1384
  • 3边肇禛,张学工.模糊识别.北京:清华大学出版社,2000.236-280.
  • 4Everitt B S,Landau S,Leese M.Clnster Analysis(Third Edition).New York:Halsted Press,1993
  • 5Camastra F,Verrian A.A novel kernel method for clustering.IEEE Transactions Oil Pattern Analysis and Machine Intelligece,2005,27(5):801-805
  • 6Newton S C,Surya P,Sunanda M.Adaptive fuzzy leader clustering complex data sets in patten recognition.IEEE Transactions Oil Neural Networks,1992,3(5):794-800

同被引文献20

  • 1关健,刘大昕.一种基于多层感知机的无监督异常检测方法[J].哈尔滨工程大学学报,2004,25(4):495-498. 被引量:4
  • 2马帅,唐世渭,杨冬青,王腾蛟.一种用于位置数据库结构调整的增量聚类算法[J].软件学报,2004,15(9):1351-1360. 被引量:5
  • 3HONKELA Antti, VALPOLA. Unsupervised variational Bayesian learning of nonlinear models[C]//Proceedings of the Seventeen Neural Information Processing Systems. Boston: Massachusetts Institute of Technology Press, 2005:593-600.
  • 4ASUNCION Arthur, NEWMAN David. UCI Machine Learning Repository [ DB/OL]. California: University of California, School of Information and Computer Science, 2007, [2010432-15]. http://www, its. uci. edu/-mleam/MLRepository, html.
  • 5LI Tao, DING Chris, JORDAN Michael. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization [ C ]// Proceedings of the Seventh IEEE International Conference on Data Mining. New Jersey: IEEE Press, 2007.
  • 6Gupte S, Masoud O, Martin R F K, Papanikolopoulos N P. Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47.
  • 7Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 2005, 26(10): 1597-1607.
  • 8Kim Z W, Malik J. Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 524-531.
  • 9Sidla O, Paletta L, Lypetskyy Y, Janner C. Vehicle recognition for highway lane survey. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE, 2004. 531-536.
  • 10Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996. 226-231.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部