期刊文献+

海洋声速剖面的自动聚类研究 被引量:4

Study on automatic clustering of sound speed profile in the ocean
下载PDF
导出
摘要 以海区30′网格方区多年月平均统计的声速剖面作为原始数据集,提取声速剖面的表层、主跃层和深海等温层分层结构特征,把我国近海及其邻近海域预分为Ⅰ,Ⅱ和Ⅲ类区。对Ⅱ,Ⅲ类区声速剖面,应用有序样本聚类算法分别进行表层分离。根据各类区的表层声速剖面数据,通过归一化处理和Akima差值采样得到梯度剖面,建立起按月归一化后的声速剖面分层梯度样本集,并应用系统聚类法和SOFM神经网络方法分别进行聚类分析,再根据分类结果并结合各类型海区的声学特点,得到各类型海区声速剖面的典型类型。通过对大量历史数据的分析结果表明,该方法为自动分类海洋声速剖面提供了一条有效路径,弥补了长期以来海洋声速剖面主要依靠人工分类的不足。 Oceanic region is classified as Ⅰ,Ⅱ and Ⅲ types based on the structures of sound speed profiles of surface layer, main thermocline and deep isothermal layer. The sound speed profiles of surface layer, Ⅱ and Ⅲ oceanic region types are separated with sequential clustering analysis arithmetic. Sound speed gradient profile sample database is estahlished through normalization process and Akima sampling method for the sound speed profiles which are derived from 30′×30′latitude-longitude historical statistic data of mixed layer of the sound speed profile for every month. Hierarchical clustering and SOFM neural network clustering analysis arithmetic is performed to classify the sound speed profile based on the sample database. Representative types of the sound speed profile are summarized depended on clustering result and acoustic character istics of different oceanic region types. The classification results based on a great deal of historical statistic sound speed profile show that the above-mentioned method is a efficient technology road map to automatic classification of sound speed profile in the ocean and makes up for manual classification all along.
出处 《海洋学报》 CAS CSCD 北大核心 2009年第2期34-39,共6页
基金 国防预研基金 新世纪优秀人才支持计划NCET
关键词 声速剖面 声速剖面类型 聚类分析 神经网络 特征提取 sound speed profile sound speed profile type clustering analysis neural network feature abstract
  • 相关文献

参考文献10

  • 1COLBORN J G. Sound Speed Distribution in the Western Indian Ocean[R]. AD Report-A027204. Sandiego, Naval Uundersea Center. Virginia : DTIC, 1976 : 10-15.
  • 2Physical Oceanography Branch, Naval Oceanographic Office. Data Base Description for Master Generalized Digital Environmental Model (GDEM) [R]. Technical Report OAML- DBD- 20. NSTL Station, Bay St. Louis, Mississippi. Virginia : DTIC, 1989 : 5.
  • 3TEAGUE W J , CARRON M J, HOGAN P J. A comparison between the generalized digital environmental model and Levitus climatologies[J].J Geophys Res,1990,95(C5):7167-7183.
  • 4CLIFFORD M A. Provincing of Generalized Digital Environmental Model Sound Speed Profiles[R]. Naval Oceanographic Office Informal Document. Washington D C. Virginia:DTIC, 1987.
  • 5PODESZWA E M. Sound Speed Profiles for the Norwegian Sea[R]. NUSC TD 6035. Naval Underwater Systems Center, Newport , Rhode Island. Virginia : DTIC, 1979 : 33-41.
  • 6PODESZWA E M. Sound Speed Profiles for the Mediterranean Sea[R]. NUSC TD 6309. Naval Underwater Systems Center,Newport , Rhode Island. Virginia : DTIC, 1980 : 1-5.
  • 7PAUL C Etter.水声建模与仿真[M].蔡志敏,宋昕,姚万军等译.北京:电子工业出版社,2005:34.
  • 8FISHER W D. An grouping for maximum homogeneity[J]. J A Stat, Assoc, 1958,53:789-798.
  • 9黄凤岗 宋克欧.模式识别[M].哈尔滨:哈尔滨工业出版社,1999..
  • 10陈念贻.模式识别优化技术及其应用[M].北京:中国石化出版社,1998.

共引文献5

同被引文献27

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部