期刊文献+

利用定点突变分析海藻糖合酶的功能 被引量:4

Functional Analysis of Trehalose Synthase in Meiothermus ruber CBS-01 by Site-directed Mutation
原文传递
导出
摘要 我们通过对来自红色亚栖热菌(Meiothermus ruber)CBS-01中的海藻糖合酶(Trehalose synthase)序列比对及三维模型构建,我们构建了D200G/H165R,R227C,R392A三个定点突变体,检测其对麦芽糖及海藻糖的转化能力。结果发现:在50°C时,D200G/H165R、R392A基本失去其原有活性,而R227C产生海藻糖的能力降低。37°C时,D200G/H165R失去转化能力,而R392A及R227C保有部分能力。因此我们推测,R392位点可能是维持酶的结构及热稳定性的关键位点,而D200位点在反应过程中也起重要作用。 After constructed a 3D-Model and make the multiple sequence alignment of amino acid sequences of trehalose synthase from Meiothermus ruber CBS-01, we performed site-directed mutagenesis of D200G/H165R, R227C, R392A. And the ablity of convertion was detected. D200G/H165R and R392A lost their activities basically, while the ability of convertion of R227C declined at 50℃. When reacted at 37℃, D200G/H165R lost its activity, while R392A and R227C dropped their ability. At last, we found that R392 and D200 had important role on activity of enzyme, while R227 had little affection.
出处 《微生物学通报》 CAS CSCD 北大核心 2009年第5期658-665,共8页 Microbiology China
基金 天津市应用基础研究计划重点项目(No.06YFJZJC02100)
关键词 海藻糖合酶 定点突变 序列比对 三维模型构建 Trehalose synthase, Site-directed mutagenesis, Multiple sequence alignment, 3D-Model
  • 相关文献

参考文献13

  • 1Tsusaki K, Nishimoto T, Nakada T, et al. Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta, 1996,1290 (1): 1-3.
  • 2Pan YT, Koroth Edavana V, Jourdian W J, et al. Trehalose synthase of Mycobacterium smegmatis purification, cloning, expression, and properties of the enzyme. Eur J Biochem, 2004, 271(21): 4259-4269.
  • 3Jia-Hung Wang, Meng-Ying Tsai, Jei-Fu Shaw, et aL Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J Agric Food Chem, 2007, 55: 3435-3443.
  • 4Yi-Shan Chen, Guan-Chiun Lee, Jei-Fu Shaw, et al. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem, 2006, 54: 7098-7104.
  • 5Zhu YM, Zhang J, Li MC, et al. Isolation and identification of a thermophilic strain produding trehalose synthase from geothermal water in China. Biosci Biotechnol Biochem, 2008, 72(8): 2019-2024.
  • 6宋卓,张宁,阮吉寿,杨卓,张涛.基于氨基酸序列预测蛋白质功能性点突变位点[J].生物物理学报,2007,23(2):134-138. 被引量:2
  • 7Sambrook J,Russell DW.分子克隆实验指南.金东雁等译.第二版.北京:科学出版社,1993,pp.49-55.
  • 8Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(1-2): 248-254.
  • 9朱玥明,张峻,邢来君,李明春.海藻糖合酶的分子生物学研究进展[J].微生物学报,2009,49(1):6-12. 被引量:10
  • 10Feese MD, Kato Y, Kuroki R, et al. Crystal structure of glycosyltrehalse trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. J Mol Biol, 2000, 301:451-464.

二级参考文献58

  • 1Koh S, Kim J, Shin HJ, et al. Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus ealdophilus GK24 trehalose synthase. Carbohydrate Research, 2003, 338(12): 1339- 1343.
  • 2MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the α - amylase family of enzymes. Biochimica et Biophysica Acta, 2001, 1546(1): 1-20.
  • 3Pan YT, Carroll JD, Asano N, et al. Trehalose synthase converts glycogen to trehalose. FEBS Journal, 2008, 275 (13) : 3408 - 3420.
  • 4Kobayashi M, Kubota M, Matsuura Y. Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius. Journal of Applied Glycoscience, 2003, 50(1): 1-8.
  • 5Kato M, Takehara K, Kettoku M, et al. Subsite structure and catalytic mechanism of a new glycosyltrehalose producing enzyme isolated from the hyperthennophilic archaeum sulfolobus solfataricus KM1. Bioscience Biotechnology and Biochemistry, 2000, 64(2) : 319 - 326.
  • 6Silva Z, Alarico S, Nobre A, et al. Osmotic adaptation of Thermus thermophilus RQ- 1: a lesson from a mutant deficient in the synthesis of trehalose. Journal of Bacteriology, 2003, 185(20) : 5943 - 5952.
  • 7Cardoso FS, Castro RF, Borges N, et al, Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology, 2007, 153(1): 270 - 280.
  • 8Makihara F, Tsuzuki M, Sato K, et al. Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans ILl06. Archives of Microbiology, 2005, 184( 1 ) : 56 - 65.
  • 9Wolf A, Kramer R, Morbach S. Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Molecular Microbiology, 2003, 49(4): 1119- 1134.
  • 10Lee JS, Hai T, Pape H, et al. Three trehalose synthetic pathways in the acarbose - producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C. Applied Microbiology and Biotechnology, 2008, 80(5) : 767 - 778.

共引文献10

同被引文献65

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部