期刊文献+

体外法添加苹果酸与饱和脂肪酸对瘤胃功能菌群数量的影响 被引量:4

The Effect of Supplementing with Malic Acid and Stearic Acid on Rumen Functional Microbe in vitro
原文传递
导出
摘要 本试验在添加饱和脂肪酸即硬脂酸(Stearic acid,SA)的基础上添加不同水平的苹果酸(Malic acid,MA),采用体外法对瘤胃微生物进行培养,通过实时定量(Real-time)PCR方法检测在添加脂肪酸和苹果酸后,对瘤胃功能微生物如纤毛虫、产甲烷菌,纤维分解细菌、氢化细菌以及脂肪分解菌的数量的影响。实验结果表明,添加硬脂酸后对脂解厌氧弧杆菌(Anaerovibrio lipolytica)和产琥珀酸丝状杆菌(Fibrobacter succinogenes)数量产生了显著影响,脂解厌氧弧杆菌数量减少了95.8%(P<0.001),产琥珀酸丝状杆菌数量增加了52.5%(P<0.05)。添加苹果酸后,添加5mmol/L MA处理组的脂解厌氧弧杆菌数量减少了91.2%(P<0.001),添加10mmol/L MA处理组,减少了94.8%(P<0.001),而MA10组比MA5组的该菌数量减少了41.3%(P<0.05)。本研究结论是硬脂酸和苹果酸分别对瘤胃部分微生物产生了显著的影响。二者对瘤胃微生物的互作影响并不显著。 Using real-time PCR to detect the effect of supplementing with Malic acid and stearic acid on rumen main functional microbe, including ciliate protozoa, methanogen, cellulolytic bacteria, hydrogenated bacteria and lipolysis bacteria in vitro. The result showed there were significant effect on the quantities of Anaerovibrio lipolytica, which decreased 95.8%(P〈0.001), and Fibrobacter succinogenes, which increased 52.5%(P〈0.05) after supplemented with Stearic Acid. The quantities of Anaerovibrio lipolytica were decreased by 91.2%(P〈0.001) on 5 mmol/L MA group and 94.8%(P〈0.001) on 10 mmol/L MA group, and the latter were decreased 41.3%(P〈0.05) than the former. The conclusion was stearic acid and malic acid were significantly effected on part of rumen microbe respectively, however, both of them were not obviously effected on them.
出处 《微生物学通报》 CAS CSCD 北大核心 2009年第5期694-699,共6页 Microbiology China
基金 国家“十一五”科技攻关奶业重大专项(No.2006BAD04A003,2006BAD12B08) 动物营养学国家重点实验室自主研究课题[No.2004DA125184(团)0801]
关键词 硬脂酸 苹果酸 Real—time PCR Stearic acid, Malic acid, Real-time PCR
  • 相关文献

参考文献18

  • 1Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: review. J Dairy Sci, 1993, 76: 3897-3931.
  • 2Palmquist DL, Conrad HR. Effects of high fat rations for dairy cows on feed intake, milk and fat production, and plasma metabolites. J Dairy Sci, 1978, 61: 890-901.
  • 3Schauff D J, Clark JH. Effects of feeding diets containing calcium salts of long-chain fatty acids to lactating dairy cows. J Dairy Sci, 1992, 75: 2990-3002.
  • 4Khorasani GR, Kennelly JJ. Effect of added dietary fat on performance, rumen characteristics, and plasma metabolites of midlactation dairy cows. J Dairy Sci, 1998, 81: 2459-2468.
  • 5Kreuzer M, Kirchgessner M. Investigations on the nutritive defaunation of the rumen of ruminants. Archives of Animal Nutrition, 1987, 37: 489-503.
  • 6Henderson C. The effects of fatty acids on pure cultures of rumen bacteria. Journal of Agricultural Science, 1973, 81: 107-112.
  • 7Machmuller A. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (rusitec). Animal Feed Science and Technology, 1998, 71:117-130.
  • 8Newbold CJ, Wallace RJ, McIntosh FM. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition, 1996, 76: 249-261.
  • 9Newbold C J, Lo'pez S, Nelson N, et al. Moss. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation. Br J Nutr, 2005, 94: 27-35.
  • 10Carro MD, Ranilla RJ. Effect of addition of malate on in vitro rumen fermentation of cereal grains. Br J Nutr, 2003, 89: 181-188.

二级参考文献15

  • 1Russell J B,Rychlik J L.Factors that alter Rumen microbial ecology.Science,2001,292:1119-1122.
  • 2Muyzer G,Smalla K.Application of denaturing gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE)in microbial ecology.Antonie van Leeuwenhoek,1998,73:127-141.
  • 3Zoetendal E G,Akkermans A D L,de Vos W M.Temperature gradient gel electrophoresis analysis of from human fecal samples reveals stable and host-specific communities of active bacteria.Applied and Environmental Microbiology,1998,64:3854-3859.
  • 4Tajima K,Aminov R I,Nagamine H,Matsui H,Nakamura M,Benno Y.Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR.Applied and Environmental Microbiology,2001,67:2766-2774.
  • 5Sylvester J T,Karnati S K R,Yu Z,Morrison M,Firkins J L.Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR.Journal of Nutrition,2004,134:3378-3384.
  • 6Bergen W G.Quantitative determination of rumen ciliate protozoal biomass with real-time PCR.Journal of Nutrition,2004,134:3223-3224.
  • 7Lin C,Raskin L,Stahl D A.Microbial community structure in gastrointestinal tracts of domestic animals:Comparative analysis using rRNA-targeted oligonucleotide probes.FEMS Microbiology and Ecology,1997,22:281-294.
  • 8Sharp R,Ziemer C,Stern M D,Stahl D A.Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system.FEMS Microbiology and Ecology,1998,26:71-78.
  • 9Stahl D A,Fleshner B,Mansfield H R,Montgomery L.Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology.Applied and Environmental Microbiology,1988,54:1079-1084.
  • 10Sievert S M,Ziebis W,Kuever J,Sahm K.Relative abundance of Achaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization.Microbiology,2000,146:1287-1293.

共引文献19

同被引文献39

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部