期刊文献+

不同目标函数下水文模拟结果的综合 被引量:3

Combination of simulated outputs of hydrological models under different objective functions
原文传递
导出
摘要 现代水文预报中,常常对流量过程各个部分均有较高的模拟要求.而降雨-径流水文模型在特定目标函数下只能对流量过程的某个特定部分(如高水流量部分或者低水流量部分)做出较好模拟.如果选用恰当的综合方案对不同目标函数下率定出的模型的模拟结果进行综合,则有望获得对整个流量过程都有较好模拟效果的模拟系列,基于ANFIS(adaptive-network-based fuzzy inference system)综合平台,对分别在高水目标函数和低水目标函数下用SCE-UA算法率定的新安江模型的模拟结果进行综合,获得了综合模拟系列,在整个流量过程上对实测流量系列都能进行较好的模拟,并较大程度地提高了模拟精度. In the modern hydrological forecasting, a good modeling of the entire flow hydrograph is required, whereas the rainfall-runoff model calibrated under special objective function can only well , late special part of the flow hydrograph, such as the high flow part or the low flow part. With a p combination scheme, a flow modeling series, which could simulate the entire flow hydrograph well, often roper could be obtained by combining the modeling results obtained from different model parameter sets calibrated un- der different objective functions. Two modeling series are obtained from the Xinanjiang model parameter sets, which are calibrated using the SCE-UA method under the high flow objective function and the low flow objective function separately. Then a combined modeling series , which can well simulate the entire flow hydrogrph and improve the modeing accuracy greatly, is obtained by combining them based on the adaptive network-based fuzzy inference system(ANFIS) combination platform.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2009年第2期143-146,共4页 Engineering Journal of Wuhan University
基金 国家自然科学基金重点项目(编号:40730632) 霍英东青年教师基金资助项目(编号:101077)
关键词 ANFIS综合平台 高水目标函数 模拟精度 ANFIS combination platform high flow objective function modeling accuracy
  • 相关文献

参考文献10

  • 1Oudin L, Andreassian V, Mathevet T, et al. Dynamic averaging of rainfall-runoff model simulation from complementary model parameterizations [J]. Water Resources Research, 2006, 42 (7): W07410, doi: 10. 1029/2005WR004636.
  • 2Shamseldin A Y, O'Connor K M, Liang G G. Meth ods for combining the outputs of different rainfall-run off models[J].Journal of Hydrology, 1997, 197 (1- 4) :203-229.
  • 3Xiong L, Shamseldin A Y, O'Connor K M. A nonlinear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno system [J]. Journal of Hydrology, 2001,245(1-4) : 196-217.
  • 4熊立华,郭生练,叶凌云.自适应神经模糊推理系统(ANFIS)在水文模型综合中的应用[J].水文,2006,26(1):38-41. 被引量:14
  • 5Jang J S R. ANFIS: adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man and Cybernetics, 1993,23 (3):665-683.
  • 6Diskin M H, Simon E. A procedure for the selection of objective functions for hydrologic simulation models [J]. Journal of Hydrology, 1977,34(1-2):129-149.
  • 7Green I R A, Stephenson D. Criteria for comparison of single event models [J]. Hydrological Sciences Journal, 1986,31(3) :395-411.
  • 8Servat E, Dezetter A. Rainfall-runoff modeling and water resources assessment in northwestern Ivory Coast. Tentative extension to ungaged catchments [J]. Journal of Hydrology, 1993,148(1-4) :231-248.
  • 9Duan Q, Sorooshian S, Gupta V K. Optimal use of SCE-UA global optimization method for calibrating watershed models [J]. Journal of Hydrology, 1994, 158:265-284.
  • 10熊立华,郭生练,庞博,姜广斌.三种基于神经网络的洪水实时预报方案的比较研究[J].水文,2003,23(5):1-4. 被引量:16

二级参考文献7

  • 1Xiong L,Shamseldin AY,O'Connor KM.A non-linear combination of the forecasts of rainfall-runoff models by the first-order TakagiSugeno fuzzy system[J].Journal of Hydrology,2001,245(1-4):197-218.
  • 2Jang JSR.ANFIS:Adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems,Man and Cybernetics,1993,23(3):665-685.
  • 3Takagi H,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,15(1):116-132.
  • 4Astrom KJ,Wittenmar B.Computer controller systems:Theory and design[M].Prentice-Hall,New Jersey,USA,1984.
  • 5Rumelhart DE,Hinton E,Williams J.Learning internal representation by error propagation[A].In:Parallel Distributed Processing[C],1986,vol.1:318-362.MIT Press,Cambridge,USA.
  • 6李荣,李义天.基于神经网络理论的河道水情预报模型[J].水科学进展,2000,11(4):427-431. 被引量:17
  • 7熊立华,郭生练,庞博,姜广斌.三种基于神经网络的洪水实时预报方案的比较研究[J].水文,2003,23(5):1-4. 被引量:16

共引文献28

同被引文献40

  • 1邓霞,董晓华,薄会娟.目标函数对HEC-HMS模型参数率定的影响研究[J].水电能源科学,2010,28(8):17-19. 被引量:15
  • 2赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.106-130.
  • 3V. P. Singh, Computer Model of Watershed Hydrological. Littleton and Colorado : Kluwer Academic, 1996.
  • 4Duan. Q,S. Sorooshian,V. K. Gupta. Optimal use of the SCE-UA global optimization method for calibrating watershed models [ J ]. Journal of Hydrology, 1994,158:265-284.
  • 5Diskin,MH, Simon, E. A procedure for the selection of objective functions for hydrologic simulation models [ J]. Journal of Hydrology, 1977,34 ( 1-2 ) : 129-149.
  • 6Deb K, Pratap A, Agrawal S, et al. A fast and elitist multi-objective genetic algorithm : NSGA-II [ J]. IEEE Trans Evol Comput,2002, 6(2) :182-197.
  • 7Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives [ J ]. Journal of Hydrology,2000,235 : 276 -288.
  • 8Yapo P O, Gupta H V, Sorooshian S. Multi-Objective global optimization for hydrological models [ J ]. Journal of Hydrology, 1998, 204:83-97.
  • 9卫晓婧,熊立华.改进的GLUE方法在水文模型不确定性研究中的应用[J].水利水电快报,2008,29(6):23-25. 被引量:12
  • 10徐刚,缪韧,杜发兴.基于粒子群算法的交互式水文模型参数率定[J].中国农村水利水电,2008(10):27-29. 被引量:1

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部