吊桥方程非对称周期解的存在性(英文)
Existence of Unsymmetric Periodic Solutions of Suspension Bridge Equation
摘要
在本文中,利用Jabri Y和Moussaoui M在最近的文献中得到的一个临界点定理,我们在没有对称性假设的情况下,证明了Lezer A C和McKenna P J吊桥方程周期解的存在性.
In this paper, using a dual version of a critical point theorem obtained in a recent paper of Jabri Y and Moussaoui M,we obtain the existence of periodic solution for Lazer and McKenna suspension bridge equation without the symmetry assumptions.
出处
《应用数学》
CSCD
北大核心
2009年第2期277-282,共6页
Mathematica Applicata
关键词
吊桥方程
非对称周期解
存在性
临界点
Suspension bridge equation
Unsymmetric periodic solution
Critical point
参考文献20
-
1Ahmed N U, Harbi H. Mathematical analysis of dynamic models of suspension bridge[J]. SIAM. J. Appl. Math. , 1998,58 : 853-874.
-
2An Y K, Zhong C K. Periodic solutions of a nonlinear suspendion bridge equation with damping and non- constant load[J]. J. Math. Anal. Appl. , 2003,279 : 569-579.
-
3Bartsch T,Ding Y H,Lee C. Periodic solutions of a wave equation with concave and convex nonlinearities[J].J. Diff. Equ., 1999,153:121-141.
-
4Brezis H,Nirenberg L. Remarks on finding fritical points[J]. Commu. Pure Appl. Math. , 1991,44:939- 963.
-
5Coron J M. Periodic solutions of a nonlinear wave equation without assumption of monotonicity[J]. Math. Ann. , 1983,262 : 258-273.
-
6Choi Q H oJung T. A nonlinear suspension bridge equation with nonconstant load[J].Nonlin. Anal., 1999,35:649-668.
-
7Choi Q H,Jung T. A nonlinear beam equation with nonconstant load[J]. Nonlin. Anal. , 1997,30:5515- 5525.
-
8Choi Q H ,Jung T, MeKenna P J. The study of a nonlinear suspension bridge equation by a variational reduction method[J].Appl. Anal. , 1995,50: 71-90.
-
9Ding Z. Nonlinear periodic oscillations in a suspension system under periodic external aerodynamic forces [J]. Nonli. Anal., 2002,49 : 1079-1097.
-
10Ding Z. On nonlinear oscillations in a suspension system[J].Trans. Amer. Math. Soci. , 2002,354:265- 274.