期刊文献+

缺失数据下含几何分布的对数线性模型的EM算法(英文) 被引量:1

The EM Algorithm in Logistic Linear Models with Geometric Distribution Involving Missing Data
下载PDF
导出
摘要 本文研究缺失数据下对数线性模型参数的极大似然估计问题.通过Monte-Carlo EM算法去拟合所提出的模型.其中,在期望步中利用Metropolis-Hastings算法产生一个缺失数据的样本,在最大化步中利用Newton-Raphson迭代使似然函数最大化.最后,利用观测数据的Fisher信息得到参数极大似然估计的渐近方差和标准误差. In this paper,a geometric response and normal covariace model for the missing data are assumed. We fit the model using the Monte Carlo EM(Expectation and Maximization) algorithm. The E-step is derived by Metropolis-Hastings algorithm to generate a sample for missing data, and the M-Step is done by Newton-Raphson to maximize the likelihood function. Asymptotic variances and the standard errors of the MLE of parameters are derived using the observed Fisher information.
出处 《应用数学》 CSCD 北大核心 2009年第2期297-302,共6页 Mathematica Applicata
基金 Supported by the National Science Foundation of China(10671057)
关键词 条件期望 极大似然估计 EM算法 Metropolis—Hastings算法 Newton—Raphson迭代 Conditional expectation Maximum likelihood estimation EM algorithmMetropolis-Hastings algorithm Newton-Raphson iteration
  • 相关文献

参考文献10

  • 1Smirlis Y G, Despotis E K. Data envelopment analysis with missing values: An interval DEA approach[J]. Appl. Math. Comput. , 2006,177 : 1-10.
  • 2Rueda M M,Gonzalez S, Arcos A. Indirect methods of imputation of missing data based on available units [J].Appl. Math. Comput. , 2005,164:249-261.
  • 3Little R J A,Rubin D B. Statistical Analysis with Missing Data[M]. NY:Wiley,2002.
  • 4Baker S G. Regression analysis for categorical variables with outcome subject to nonignorable nonresponse[J].J. Am. Star. Assoc. , 1988,83 : 62-69.
  • 5Ibrahim J G,Lipsitz S R. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable[J].J. Royal Stat. Soc. B, 1999,61:173-190.
  • 6Jahanshahloo G R, Lotfi F H, Rezai H Z, Ball F R. Using Monte Carlo method for ranking efficient DMUs[J]. Appl. Math. Comput. , 2005,162:371-379.
  • 7Robert C P,Casella G. Monte Carlo Statistical Methods[M]. Berlin:Springer, 1999.
  • 8Watanabe M, Yamaguchi K. The EM Algorithm and Related Statistical Models[M]. NY: Marcel Dekker, 2004.
  • 9Jeong-Soo Park,Guoqi,Qian Q, Yuna Jun. Monte Carlo EM algorithm in logistic linear models involving non-ignorable missing data[J]. Appl. Math. Comput. , 2008,197:440-450.
  • 10Louis T A. Finding observed information using the EM algorithm[J]. J. Royal Stat. Soc. , 1982, B44: 226-233.

同被引文献11

  • 1Aitkin M. Modelling variance heterogeneity in normal regression using GLIM[J].Applied Statistics,1987.332-339.
  • 2Taylor J T,Verbyla A P. Joint modelling of location and scale parameters of the t distribution[J].{H}STATISTICAL MODELLING,2004.91-112.
  • 3Harvey A C. Estimating regression models with multiplicative heteroscedasticity[J].{H}ECONOMETRICA,1976.460-465.
  • 4WU Liucang,ZHANG Zhongzhan,XU Dengke. Variable selection in joint location and scale models of the skew-normal distribution[J/OL].Journal of Statistical Computation and Simulations,2012.
  • 5Azzalini A. A class of distributions which includes the normal ones[J].{H}SCANDINAVIAN JOURNAL OF STATISTICS,1985.171-178.
  • 6XIE Fengchang,WEI Bocheng,LIN Jinguan. Homogeneity diagnostics for skew-normal nonlinear regression models[J].{H}Statistics & Probability Letters,2009,(6):821-827.
  • 7Cysneiros F J A,Cordeiro G M,Cysneirosa A H M A. Corrected maximum likelihood estimators in heteroscedastic symmetric nonlinear models[J].{H}JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION,2010,(4):451-461.
  • 8韦博成.参数统计教程[M]{H}北京:高等教育出版社,2006.
  • 9Cook A D,Weisberg S. An Introduction to Regression Graphics[M].{H}New York:John Wiley and Sons,Inc,1994.
  • 10童恒庆,余超,赵旭杰.凸约束广义线性回归模型的参数估计及算法[J].应用数学,2008,21(4):635-639. 被引量:5

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部