期刊文献+

基于双参数罚函数求解约束优化问题的一个新算法 被引量:4

A New Algorithm for Solving Constrained Optimization on Exact Penalty with Two Parameters
下载PDF
导出
摘要 对于含约束不等式的最优化问题给出了一种双参数罚函数形式,在文[7]的拟牛顿算法的基础上提出了一个同时改变双参数罚函数的新算法,研究了它的收敛性,数值实验表明了该算法是有效的. We give a two-parameter penalty function for inequality constrained oPtimization problems. We propose a new algorithm based on quasi Newton algorithm in [7] ,in which two parameters are stimulaneously updated,and we study its convergence. Numerical examples illustrate the effectivity of the algorithm.
出处 《应用数学》 CSCD 北大核心 2009年第2期346-351,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(70571049) 湖南省重点学科建设资助项目
关键词 最优化 双参数罚函数 算法 收敛性 Optimization Two-parameter penalty function Algorithm Convergence
  • 相关文献

参考文献8

  • 1Rosenberg E. Globally convergent algorithm for co,vex programming[J]. Mathmatics of Operations Research, 1981,6(3) :437-452.
  • 2Pinar M C,Zenios S A. On smoothing exact penalty functions for convex constrained optimization[J].SIAM Journal on Optimization, 1994,4:486-511.
  • 3Mongeau M,Sartenaer A. Automatic decrease of the penalty parameter in exact penalty functions methods[J]. European Journal of Operational Research, 1995,83 : 686-699.
  • 4Rubinov A M,Glover B M. Extened Lagrange and penalty functions in continuous optimization[J]. Optimization, 1999,46(3) : 327-351.
  • 5Rubinov A M, Glover B M. Decreasing functions with applications to penalization[J]. SIAM Journal on Optimization, 1999,10(1) :289-313.
  • 6Yang X Q, Huang X X. A nonlinear Lagrange approach to constrained optimization problems[J]. SIAM Journal on optimization, 2001,11 (4):1119-1141.
  • 7刘树人,孟志青.双参数精确罚函数求解约束优化问题的拟牛顿算法[J].系统工程,2005,23(10):68-72. 被引量:6
  • 8孟志青.精确罚函数与交叉规划问题的研究[D].西安:西安电子科技大学,2003.

二级参考文献9

  • 1Rosenberg E. Globally convergent algorithm for convex progromming[J]. Mathmatics of Operations Research, 1981, 6(3):437~452.
  • 2Pinar M C,et al.On smoothingexact penalty functions for convex constrains optimization[J]. SIAM Journal on Optimization,1994,4:486~511.
  • 3Mongeau M,et al.Automatic decrease of the penalty parameter in exact penalty functions methods[J].European Journal of Operational Research,1995,83:686~699.
  • 4Rubinov A M,et al.Extened Lagrange and penalty functions in continuous optimization[J]. Optimization,1999,46(3):327~351.
  • 5Rubinov A M,et al.Decreasing functions with applications to penalization[J]. SIAM Journal On Optimization,1999,10(1):289~313.
  • 6Yang X Q,et al. A nonlinear lagrange approach to constrained optimization problems[J]. SIAM Journal on Optimization,2001,11(4):1119~1141.
  • 7孟志青.精确罚函数与交叉规划问题的研究[J].西安:西安电子科技大学,2003..
  • 8Lasserre J B. A globally convergent algorithm for exact penalty functions[J]. European Journal of Opterational Research,1981,7:389~395.
  • 9孟志青,胡奇英,汪寿阳.一种新的罚函数的精确罚定理[J].自然科学进展,2003,13(3):328-330. 被引量:9

共引文献5

同被引文献21

  • 1刘树人,孟志青.双参数精确罚函数求解约束优化问题的拟牛顿算法[J].系统工程,2005,23(10):68-72. 被引量:6
  • 2Shi Zhenwei, Zhang Changshui. Semi-blind Source Extraction for Fetal Electrocardiogram Extraction by Combining Non-Gaussianity and Time-correlation [ J ]. Neuroeomputing, 2007,70 : 1574-1581.
  • 3Zhang Z L, Yi Z. Extraction of a Source Signal Whose Kurtosis Value Lies in a Specific Range [ J ]. Neurocomputing,2006,69 (7- 9 ) :900-904.
  • 4Barros A K, Cichoeki A, Extraction of Specific Wignals with Temporal Structure. Neural Comput ,2001,13 ( 9 ) : 1995-2003.
  • 5Zhang Z L, Yi Z. Robust Extraction of Specific Signals with Temporal Structure [ J]. Neurocomputing, 2006,69 ( 7 ) :888-893.
  • 6Amari S. Adaptive Blind Signal and Image Processing [ M ]. New York : Wiley, 2001 : 165 - 202.
  • 7Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [ M ]. New York : Wiley, 2001 : 188-191.
  • 8De Moor BLR (ed.), DaiSy: Database for the Identification of Systems. [ EB/OL ]. www. esat. kuleuven, ae. be/sista/daisy, 2005/2008.3.10.
  • 9Maria G. Jafari, Jonathon A. Chambers. Fetal Electrocardiogram Extraction by Sequential Source Separation in the Wavelet Domain [ J]. IEEE Transactions on Biomedical Engineering,2005,52 (3) : 390-400.
  • 10Shi Zhenwei, Zhang Dan, Zhang Changshui. MACBSE : Extracting Signals with Linear Autoeorrelations. Neuroeomputing, 2008 (71) : 1082-1091.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部