期刊文献+

基于交叉熵方法的选择性AODE算法 被引量:1

Learning Selective AODE for Classification Based on Cross-Entropy Method
下载PDF
导出
摘要 AODE(Averaged One-Dependence Estimators)算法是最近提出的一种典型的基于naveBayes的改进算法,并受到国际机器学习界的关注。交叉熵方法(Cross-entropy Method)是一种解决组合优化问题的全局随机搜索算法,已经成功地被应用到许多经典的NP问题中。给出了AODE算法选择性集成的理论基础,并基于交叉熵方法,提出了解决AODE算法选择性集成的CESAODE(Cross-Entropy method for Selective AODE)算法。在WEKA平台上使用UCI数据集进行的仿真实验结果表明,CESAODE算法比现有的分类算法,例如AODE等具有更好的分类性能。 AODE (Averaged One-Dependence Estimators) is a recently proposed semi-naive Bayes algorithm and has attracted the attention of the machine learning community. Cross-Entropy Method is a recently proposed random search algorithm and has been successfully applied into a wide range of NP hard problem with promising result. The selective AODE problem was studied and the theoretical foundation was given to explain why model selection for AODE was useful, and CESAODE (Cross-Entropy method for Selective AODE) was proposed which could efficiently search the optimal subset over the whole one-dependence estimators of AODE. The experimental results show that the algorithm significantly outperforms the existing algorithms such as AODE in term of classification accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第10期2878-2882,2888,共6页 Journal of System Simulation
基金 安徽省教育厅重大项目资金(ZD200904) 安徽省高校优秀青年人才基金(2009SQRZ075) 复旦大学博士创新基金(EYH1232004)
关键词 分类算法 选择性集成 AODE 交叉熵方法 M估计 classification selective ensemble AODE cross-entropy method M-estimation
  • 相关文献

参考文献13

  • 1G I Webb, I Boughton, Z Wang. Not so nai've bayes: Aggregating one-dependence estimators [J]. Machine Learning (S0302-9743), 2005, 58(7): 5-24.
  • 2Y Yang, G I Webb, et al. To Select or To Weight: A Comparative Study of Model Selection and Model Weighting for SPODE Ensembles [C]// Proceedings of 16th European conference on Machine Learning (ECML). The Netherlands: Elsevier B.V. 2006: 170-181.
  • 3F Zhang, G I Webb. Efficient lazy elimination for averaged one-dependence estimators [C]// Proceedings of 23rd International conference on Machine Learning (ICML). Pittsburgh, PA, USA: Elsevier B.V. 2006:1113-1120.
  • 4Cerquides J, Mantaras R L D. Robust Bayesian linear classifier ensembles [C]// Proceedings of 16th European conference on Machine Learning (ECML). The Netherlands: Elsevier B.V. 2005:70-81.
  • 5J Quinlan. C4.5: Programs for Machine Learning [M]. San Mateo, USA: Morgan Kaufmarm, 1993.
  • 6N Friedman, D Geiger, M Goldszrnidt. Bayesian Network Classifiers [J]. Machine Learning (S0377-2217), 1997, 29(12): 131-163.
  • 7Q wang, C H Zhou, J K Guo. Learning Selective Averaged-One Dependence Estimators for Probability Estimation [C]// Proceedings of 4th International conference on Fuzzy Set and Knowledge Discovery (FSKD). USA: IEEE Computer Society Press, 2007, 1: 492-496.
  • 8De Boer P-T, Kroese D P, Mannor S, Rubinstein R Y. A Tutorial on the Cross-Entropy Method [J]. Annals of Operations Research (S0254-5330), 2005, 134(18): 19-67.
  • 9Rubinstein R Y, Kroese D P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning [M]. New York, USA: Springer- Verlag, 2004.
  • 10娄山佐.一种解决多库房随机车辆路径问题方法[J].系统仿真学报,2007,19(4):879-882. 被引量:2

二级参考文献8

  • 1Salhi S, Gamal MDH. A Genetic Algorithm Based Approach for the Uncapacitated Continuous Location-allocation [J]. Annals of Operations Research (S0254-5330), 2003, 123: 203-222.
  • 2Kenyon A S, Morton D P. A Survey on Stochastic Location and Routing Problems [J]. Central European Journal of Operations Research (S1613-9178), 2001,9(4): 277-328.
  • 3Gendreau M, Laporte G, Séguin R. A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers[J]. Operations Research (S0030-364X), 1996, 44(3):469-477.
  • 4Guo Z G. Mak K L. A Heuristic Algorithm for the Stochastic Vehicle Routing Problems with Soft Time Windows [C]// Proceedings of the 2004 Congress on Evolutionary Computation (CEC2004), Portland,Oregon, USA. 2004.
  • 5Yang, Wenhui, Mathur K, Ballou R H. Stochastic Vehicle Routing Problem with Restocking [J]. Transportation Science (S0041-1655),2000, 34(1): 99-112.
  • 6Chepuri K, Homem-de-Mello T. Solving the vehicle Routing Problem with Stochastic Demands Using the Cross-Entropy Method[J]. Annals of Operations Research (S0254-5330), 2005, 134:153-181.
  • 7De Boer, Kroese P T D P, Mannor S, Rubinstein R Y. A Tutorial on the Cross-Entropy Method [J]. Annals of Operations Research(S0254-5330), 2005, 134: 19-67.
  • 8Nagy, Salhi. Heuristic Algorithms for Single and Multiple Depot Vehicle Routing Problems with Pickups and Deliveries [J]. European Journal of Operational Research (S0377-2217), 2005, 162( 1 ): 126-141.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部