期刊文献+

诺西肽分批发酵过程混合建模 被引量:1

Hybrid Modeling of Nosiheptide Batch Fermentation Process
下载PDF
导出
摘要 提出了基于过程机理和神经网络修正的混合建模方法。利用差分进化算法对诺西肽分批发酵过程机理模型的参数进行辨识,用神经网络建模方法对机理模型进行修正。模型的训练与验证数据都取自实际的实验过程—诺西肽分批发酵。验证结果表明,混合模型比单纯的机理模型具有更高的精度。 A hybrid modeling method based on process mechanism and neural network was proposed, which used differential evolution (DE) algorithm to identify parameters of the mechanical model and neural network to modify the model, Training and validation data are both from experimental process-Nosiheptide batch fermentation process. Validating results show that the hybrid model has higher precision than the mechanical model.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第10期3084-3087,共4页 Journal of System Simulation
基金 国家自然科学基金(60674063) 辽宁省自然科学基金(20062024) 教育部暨辽宁省流程工业综合自动化重点实验室基金资助
关键词 神经网络 差分进化算法 混合建模 分批发酵 neural network differential evolution algorithm hybrid modeling batch fermentation
  • 相关文献

参考文献13

  • 1A Vrsalovic Presecki, D Vasic-Racki. Modelling of the alcohol dehydrogenase production in baker's yeast [J]. Process Biochemistry (S0032-9592), 2005, 40(8): 2781-2791.
  • 2Ezequiel Franco-Lara, Hannes Link, Dirk Weuster-Botz. Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm [J]. Process Biochemistry (S0032-9592), 2006, 41(10): 2200-2206.
  • 3B de Andres-Toro, J M Giron-Sierra, et al. A kinetic model for beer production under industrial operational conditions [J]. Mathematics and Computers in Simulation (S0378-4754), 1998, 48(1): 65-74.
  • 4Van Impe, Jan F M. Power and limitations of model based bioproeess optimization [J]. Mathematic and Computers in Simulation (S0378-4754), 1996, 42(2-3): 159-169.
  • 5J F Van Impe, G Bastin. Optimal adaptive control of fed-batch fermentation processes [J]. Control Eng. Practice (S0967-0661), 1995, 3(7): 939-954.
  • 6Gulnur Birol, Cenk Undey, Ali Cinar. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers and Chemical Engineering (S0098-1354), 2002, 26(11): 1553-1565.
  • 7Rainer S, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization (S0925-5001 ), 1997, 11 (4): 341-359.
  • 8D G Mayer, B P Kinghom. Differential evolution-an easy and efficient evolutionary algorithm for model optimization [J]. Agricultural Systems (S0308-521X), 2005, 83(3): 315-328.
  • 9Feng-Sheng Wang, Tzu-Liang Su, Horng-Jhy Jang. Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process [J]. Ind. Eng. Chem. Res. (S0888-5885), 2001, 40(13): 2876-2885.
  • 10颜学峰,余娟,钱锋,丁军委.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版),2006,32(1):94-97. 被引量:34

二级参考文献30

  • 1周鸣争,汪军.基于SVM的多传感器信息融合算法[J].仪器仪表学报,2005,26(4):407-410. 被引量:12
  • 2桑海峰,王福利,何大阔,张大鹏.基于最小二乘支持向量机的发酵过程混合建模[J].仪器仪表学报,2006,27(6):629-633. 被引量:15
  • 3周珮,金慧霞,李霞,姜雅芬.饲料添加剂Nosiheptide(那西肽)的深层培养研究[J].工业微生物,1990,20(3):7-11. 被引量:6
  • 4Oills D F,Pelizzetti E,Serpone N.Photocatalysis:Fundamental and Application[M].New York:Wiley,1989.603.
  • 5Pruden B B,Le H.Wet air oxidation of soluble components in waste water[J].Can J Chem Eng,1976,54:319-325.
  • 6Levec J.Catalytic oxidation of toxic organics in aqueous solution[J].Appl Catal,1990,63:1-5.
  • 7Modell M.Processing methods for the oxidation of organics in supercritical water[P].U S:4338199,1982.
  • 8Modell M.Procesing methods for the oxidation of organics in supercritical water[P].U S:4543190,1985.
  • 9Balland L,Estel L,Cosmao J M,et al.A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters[J].Chemometrics and Intelligent Laboratory Systems,2000,50:121-135.
  • 10Holland J H.Adaptation in Natural and Artificial Systems[M].Michigan:The University of Michigan Press,1975.

共引文献39

同被引文献26

  • 1解增忠,张俊峰,罗雄麟,陈育昆,季德伟.管壳换热器模型库及在换热网络仿真中的应用[J].系统仿真学报,2005,17(12):2882-2887. 被引量:15
  • 2刘晓燕,张艳,刘立君,赵波.特高含水期油气水混输管道压降计算方法研究[J].工程热物理学报,2006,27(4):615-618. 被引量:12
  • 3Shehata RS , Abdullah HA, Areed FFG. Variable structure surge control for constant speed centrifugal compressors [ J ]. Control En- gineering Practice, 2009, 17(7) : 815-833.
  • 4Jiang W, Khan J, Dougal RA. Dynamic centrifugal compressor model for system simulation[ J]. Journal of Power Sources, 2006, 158(2) :1333-1343.
  • 5D. J. Sebald, J. A. Bucklew. Multiple least squares support vector machine techniques for nonlinear equalization[J]. IEEE Transac-tion on Signal Processing , 2000, 48( 11 ) : 3217-3226.
  • 6CUI W T,YAN X F. Adaptive weighted least square support vector machine regression integrated with outlier detection and its applica- tion in QSAR [ J ]. Chemometrics and Intelligent Laboratory Sys- tems, 2009,89 (2) : 130-135.
  • 7Van de Ven, James D, Li, Perry Y. Liquid piston gas compres- sion. Applied Energy[ J]. 2009,86(10) :2183-2191.
  • 8Simonenko, V A, Chizhkova N E. Isentropic self-similar gas com- pression[ J]. AIP Conference Proceedings,2006,849( 1 ) :82-88.
  • 9Bonjour J, Bejan A. Optimal distribution of cooling during gas compression [ J ]. Energy,2006,31 (4) :409-424.
  • 10Kurz R, R C White. Surge avoidance in gas compression systems [ J ]. Journal of Turbomachinery. 2004,126 (4) 501-506.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部