期刊文献+

混合树增广朴素贝叶斯分类模型 被引量:3

Mixed tree augmented Naive Bayes classifier model
下载PDF
导出
摘要 树增广朴素贝叶斯分类算法(TANC)虽然降低了朴素贝叶斯分类算法(NBC)的条件独立性约束,但是该模型同时又要求每个条件属性结点(除树的根结点外)都有两个父结点,这种限制同样降低了分类的正确率。因此,提出了一种基于粗糙集理论的混合树增广朴素贝叶斯分类模型(MTANC)。通过在UCI数据集上的仿真实验,验证了该方法的有效性。 Although tree augmented Naive Bayes classifier(TANC) model reduces the independence assumption restriction of Naive Bayesian classifier(NBC) model,the model requires each attribute note(except for the root note) to own two parents,which has decreased the accuracy rate of classification.So a new Bayesian model mixed tree augmented Naive Bayes classifier(MTANC) based on the rough set theory is presented.The validity of the approach is established by the simulated experiment of UCI data set.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第9期2254-2256,2273,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(10471045) 国家新世纪优秀人才计划基金项目(NCET-05-0734) 教育部人文社科基金项目(2005-241)
关键词 数据挖掘 贝叶斯 树增广朴素贝叶斯分类 混合的树增广朴素贝叶斯分类 粗糙集 data mining bayes tree augmented Naive Bayes classifier mixed tree augmented naive bayes classifier rough set
  • 相关文献

参考文献8

  • 1Elkan C. Boosting and Naive Bayesian learning[R]. Technical Report CS97. San Diego:Dept of Computer Science and Engineering,University Calif at San Diego, 1997.
  • 2Chickering D M,Geiger D,Heckerman D.Learning Bayesian networks is NP-complete[C].Learning from Data:Artificial Intelligence and Statistics.New York:Springer Verlag, 1996:121-130.
  • 3Fried N,Geiger D,Goldszmidt M,et al.Bayesian network classifiers [J] .Machine Learning, 1997,29 (2-3): 131 - 163.
  • 4Pawlak Z.Rough sets[M].London:Kluwer Academic Publishers, 1991:10-60.
  • 5苏宏升,李群湛,郝文斌.基于粗糙集和贝叶斯分类器的变电站故障诊断[J].计算机工程与设计,2006,27(16):3099-3101. 被引量:4
  • 6汪杭军,张广群,方陆明.粗糙集属性约简算法的实现与应用[J].计算机工程与设计,2007,28(4):777-779. 被引量:16
  • 7刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 8MURPH PM, AHA D W.UCI repository of machine learning databases[DB/OL], http ://www.ics.uci.edu/-mleam/MLRepository.html,2006.

二级参考文献16

  • 1蒋世忠,杨天奇.基于拓展粗糙集的不完备表的规则挖掘及应用[J].计算机工程与设计,2005,26(7):1767-1769. 被引量:3
  • 2季赛,沈星,沈超.基于粗糙集的CBR检索在天气预测中的应用[J].计算机工程与设计,2005,26(11):2898-2901. 被引量:6
  • 3Lee Heung-Jae,Ahn Bok-Skin,Park-Yong Moon.A fault diagnosis expert system for distribution substations[J].IEEE Trans on power Delivery,2000,15 (1):92-97.
  • 4Zhang Qi,Han Zhenxiang,Wen Fuchuan.A new approach for fault diagnosis in power systems based on rough set theory[C].Hong Kong:4th International Conference on Advances in Power System Control,Operation and Management,IEEE,1997.596-602.
  • 5Chen Wen-Hui,Liu Chih-Wen,Men-Shen Tsai.On-line fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method[J].IEEE Transactions on Power Delivery,2000,15(2):710-717.
  • 6Alves da Silva A P,Insfran A H F,da Sillvera P M,et al.Neural networks for fault location in substations[J].IEEE Transactions on power Delivery,1996,11 (1):234-239.
  • 7Pawlak Z.Rough sets[J]Jnternational Journal of Information and Computer Science,1982,11(5):341-356.
  • 8Jarvinen J.Knowledge representation and rough sets[D].Finland:University of Turku,1999.
  • 9R.Slowinski,D.Vanderpooten.A generalized definition of rough approximations based on similarity[J].IEEE Transactions on Knowledge and Data Engineering,2000,12:331-336.
  • 10张文修.信息系统与知识获取[M].北京:科学出版社,2003.

共引文献376

同被引文献24

  • 1李旭升,郭耀煌.扩展的树增强朴素贝叶斯分类器[J].模式识别与人工智能,2006,19(4):469-474. 被引量:6
  • 2董立岩,刘光远,苑森淼,李永丽,孙铭会.混合式朴素贝叶斯分类模型[J].吉林大学学报(信息科学版),2007,25(1):57-61. 被引量:8
  • 3WEN F S, CHANG C S. Robabilistic approach for fault-section estimation in power systems based on a refined genetic algorithm[J]. IEEE Proceeding Genera6on Transmition and Distribution, 1997,144(2) : 160-168.
  • 4LI Jian-qiang, WANG Song-ling. Research and application of data mining technique in power plant [ C]//Intematlonal Symposium on Computational Intelligence and Design, 2008: 250-253.
  • 5RISH I. An empirical study of the naive Bayes classifier [ C ]//IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Seattle,2001:41 - 46.
  • 6FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers [ J ]. Machine Learning, 1997, 29 : 131 - 163.
  • 7EUNSEOG Y, MYONG K J. Class dependent feature scaling method using naive Bayes classifier for text data mining[ J]. Pattern Recognition Letters, 2009, 30 (5) : 477 - 485.
  • 8DOMINGOSP, PAZZANI M. Beyond independence: Conditions for the optimality of the simple bayesian classifier[ C ]//Proceedings of the Thirteenth International Conference on Machine Learning, Morgan Kaufmann Publishers, 1996:105 - 112.
  • 9CHENG J, GREINER R. Comparing bayesian network classifiers[C]//Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence ( UAI' 99 ), 1999: 101 - 107.
  • 10DUCHENE J, LECLERCQ S. An optimal transformation for discriminant and principal component analysis [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10(6):978-983.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部