摘要
针对广义Sierpinski垫正交指数函数集的元素个数问题,引入自仿测度概念,将Dutkay和Jorgensen所讨论的扩张矩阵M推广,通过分析μM,D的傅里叶变换M,D的零点集Z(M,D)的性质,证明L2(μM,D)中的任意正交指数集至多包含4个元素。这一结论改进并推广了以前的相关结果。
In order to study the problem of the number of the orthogonal exponential functions on the generalized Sierpinski gasket, the concept of self-affine measure is introduced. By the analysis of characterization of the zero set Z(μM,D) of the Fourier transformμM,D, it is proved that there exist at most 4 mutually orthogonal exponentials in L2 (μM,D). The previous relevant results are improved and extended.
出处
《黑龙江科技学院学报》
CAS
2009年第2期140-142,146,共4页
Journal of Heilongjiang Institute of Science and Technology
基金
周口师范学院青年科研基金重点项目(ZKQN200835)
关键词
自仿测度
迭代函数系
正交指数函数
self-affine measure
iterated function system
orthogonal exponentials