期刊文献+

KdV方程矩阵形式的精确解 被引量:3

Matrix form of exact solutions to the KdV equation
下载PDF
导出
摘要 运用双线性方法与Wronskian技巧,得到了KdV方程Wronskian形式的孤子解,并由此推出了该方程的Positon解、Negaton解及有理解等.此方法比传统的Wronskian技巧更加综合和通用,可用于其他孤子方程的求解. A matrix extension was presented for constructed much broader class of exact solutions to the KdV equation through the Wronskian technique. The obtained solutions formulas provided ones with a comprehensive approach to construct the existing solutions. The method used was general that could be applied to other soliton equations.
出处 《浙江师范大学学报(自然科学版)》 CAS 2009年第2期126-132,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10771196)
关键词 HIROTA方法 KDV方程 WRONSKIAN技巧 矩阵表示 Hirota method KdV equation Wronskian technique matrix form
  • 相关文献

参考文献3

二级参考文献20

  • 1谷超豪 等.孤子理论与应用[M].杭州:浙江科技出版社,1980.141-174.
  • 2上海大学孤子讨论小组.Baecklund变换与n孤子解.第三届全国孤子理论与可积系统讨论会[M].郑州,2001..
  • 3李翊神.孤子方程的精确解及若当标准形[M].上海大学,2001..
  • 4上海大学孤立子研究小组.Wronskian行列式的性质[M].上海大学,2001..
  • 5陈登远.拟微分算子及其约束[M].,2001..
  • 6张友金.某些孤子方程的求解、对称以及量子代数Uq(sl(n))与某些有限群的一个联系[M].安徽合肥:中国科技大学,1993..
  • 7WAHLQUIST H D, ESTABROOK F B. Backlundtransformation for solution of the Korteweg-de Vries equation [J]. Phys. Rev. Lett., 1973, 23: 1386-1389.
  • 8李翊神.KdV方程的Darboux变换[R],在中国科技大学孤立子讨论班的报告[R].,1984..
  • 9HIROTA R. A new form of the Backlund transformations and its relation to inverse scattering problem [J].Progr. Theoret. Phys., 1974, 52: 1498-1512.
  • 10ABLOWITZ M J, SEGUR H. Solitons and the Inverse Scattering Transform [M]. SIAM Philadelphia, 1981.

共引文献37

同被引文献33

  • 1吴小红.(2+1)维可变系数的Broer-Kaup-Kupershmidt方程的新显式精确解和混沌行为[J].浙江师范大学学报(自然科学版),2007,30(3):294-298. 被引量:2
  • 2Ablowitz M J,Clarkson P A.Solitons,nonlinear evolution equations and inverse scattering[M].Cambridge:Cambridge University Press,1991.
  • 3Hirota R.Exact solution to the KdV equation for multiple collisions of solitons[J].Phys Rev Lett,1971,27:1192-1194.
  • 4Hu X B.A B(a)cklund transformation and nonlinear superposition formula of a modified KdV-type bilinear equation[J].J Math Phys,1994,35:4379-4745.
  • 5Freeman N C,Nimmo J J C.Soliton solutions of the Korteweg de Vries and Kadomtsev-Petviashvili equations:the Wronskian technique[J].Phys Lett A,1983,95(1):1-3.
  • 6Matveev V B.Generalized Wronskian formula for solutions of the KdV equation[J].Phys Lett A,1992,166(3/4):205-208.
  • 7Yao Yuqing,Ji Jie,Liu Yuqin,et al.Soliton solutions,rational solutions,Matveev solutions,complexions and mixed solutions for three (2+1)-dimension equations[J].Phys Lett A,2008,372(6):786-797.
  • 8Li Chunxia,Ma Wenxiu,Liu Xiaojun,et al.Wronskian solutions of the Boussinesq equation:solitons,negatons,positons and complexitons[J].Inverse Problems,2007,23(1):279-296.
  • 9Sun Yunpen,Bi Jinbo,Chen Dengyuan.N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation[J].Chaos,Solitons and Fractals,2005,26(3):905-912.
  • 10Ji Jie.The double Wronskian solutions of a non isospectral Kadomtsev-petviashvili equation[J].Phys Lett A,2008,372(39):6074-6081.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部