期刊文献+

Carleman不等式的新加强 被引量:3

Some new reinforcement of the Carleman′s inequality
下载PDF
导出
摘要 运用一些分析技巧,对有限项Carleman不等式进行非严格化,给出了无限项Carleman不等式的2个新的加强式,得到了e∑nk=1kk+1αak-∑nk=1(∏ki=1ai)1/k≥Ane∑nk=11k-∑nk=1(k+1)α/k(k!)1/k;∑∞k=1(∏ki=1ai)1/k≤e∑∞k=1kk+1αak;∑∞k=1((k+1)α∏ki=1ai)1/k≤e∑∞k=1ak.其中,α=ln1 2-1≈0.442 695…,ak>0,k=1,2,…,An=1≤mki≤nn(kk+α+11)αak. It was improved the Carleman's inequality, two strengthened versions of Carleman's inequality were given as following: e∑k=1^n(k/k+1)^α ak-∑k=1^n(Пi=1^k ai)^1/k≥An(e∑k=1^n 1/k-∑k=1^n(k+1)^α/k/(k!)^1/k); ∑k=1^∞(Пi=1^k ai)^1/k≤e∑k=1^∞(k/k+1)^α ak; ∑k=1^∞((k+1)^αПi=1^k ai)^1/k≤e∑k=1^∞ ak. where,α=1/ln2-1≈0.442695…,ak〉0,k=1,2…,An=min 1≤k≤n{k^α+1/(k+1)^α ak}
作者 金小萍
出处 《浙江师范大学学报(自然科学版)》 CAS 2009年第2期143-146,共4页 Journal of Zhejiang Normal University:Natural Sciences
关键词 最大值 不等式 CARLEMAN不等式 STIRLING公式 maximum inequality Carleman's inequality Stirling's formula
  • 相关文献

参考文献7

  • 1Carleman T. Sur les fonctions quasi-analytiques [ M ]. Helsingfors: Comptes rendus du Ⅴ Congresdes Mathematiciens Scandinaves, 1922 : 181- 196.
  • 2文家金,张日新.关于Hardy不等式的加强改进[J].数学的实践与认识,2002,32(3):476-482. 被引量:7
  • 3Yang Bicheng, Debnath L. Some inequalities involving the constant e and an application to Carleman's inequality [ J ]. J Math Anal Appl, 1998, 223( 1 ) :347-353.
  • 4Pecaric J, Stolarsky K B. Carleman's inequality: History and new generalizations [ J ]. Aequationes Math, 2001,61 ( 1/2 ) : 49 -62.
  • 5Johansson M, Persson L E, Wedestig A. Carleman's inequality history, proof and some new generalizations [ J ]. Journal of Inequalities in Pure and Applied Mathematics,2003,4 (3) :254-265.
  • 6张小明 褚玉明.最值单调性定理及其应用.不等式研究通讯,2008,15(1):1-8.
  • 7Zhang Xiaoming. A new proof method of analytic inequality [ J ]. Research Group in Mathematical Inequalities and Applications,2009,12 ( 1 ) : 1-2.

二级参考文献4

共引文献6

同被引文献14

  • 1马昌威.关于Van der Corput不等式的进一步改进[J].西华师范大学学报(自然科学版),2004,25(3):325-327. 被引量:9
  • 2孙国正,严平.Carleman不等式的一种推广[J].工科数学,1999,15(3):131-132. 被引量:5
  • 3陈超平,祁锋.关于Carleman不等式的进一步加强[J].大学数学,2005,21(2):88-90. 被引量:4
  • 4赵岳清.Carleman不等式的一个注记[J].台州学院学报,2005,27(3):21-24. 被引量:4
  • 5Hardy G H, Littlewood J E, Polya G. Inequalities [ M ]. London, Cambridge University Press, 1952,239 - 242.
  • 6Yang Bicheng, Lokanath Debnath. Some Inequalities Involving the Constant e and an Application to Carleman- Inequality[ J]. J Math Anal Appl, 1998,223:347 - 353.
  • 7Hardy G H, Littlevood J E, Polya G. Inequalities [C]. London, Cambridge University Press, 1952: 239-242.
  • 8YangBicheng, LokenathDebnath. Some inequalitiesinvolving the constant e and anapplication to Carleman's inequality [J].JathAnal Appl, 1998,223:347-353.
  • 9YANG B C. Note on Hardy' s Inequal ity [J]. J. Math. Anal Appl, 1999, 234:712-722.
  • 10Carleman T. $ur Les Fonctions Quasi - analytiques [M]. Hel-singfors: Comptes rendus du V Cong. Math. Scandinaves, 1922:181 - 196.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部