摘要
利用初等方法给出了丢番图方程x4+2py4=z2,(x,y)=1当p=7时的全部正整数解,从而拓展了Mordell关于x4+2py4=z2的结果。
With an elementary method, all positive integer solutions to Diophantine equation x^4 + 2py^4 = z^2 are given under the conditions p = 7 and (x,y) = 1. Accordingly, Mordell's results of the equation are extended.
出处
《辽东学院学报(自然科学版)》
CAS
2009年第1期44-46,67,共4页
Journal of Eastern Liaoning University:Natural Science Edition
关键词
丢番图方程
正整数解
两两互素
Diophantine equation
positive integer solution
prime to each other