期刊文献+

求解K最短路径的改进Dijkstra算法 被引量:2

Solves K most short-path improvement Dijkstra algorithm
下载PDF
导出
摘要 本文首先从轨道交通和常规交通的衔接规划的视角,阐述了求解K最短路径问题在公交线网优化中的意义。然后在Dijkstra最短路算法的基础上,创造性地引入了多个P标和多个T标来记录起点到该节点的K短路径及其上界,使改进后的算法成功求解K最短路径。最后用C语言对算法进行实现,并随机产生测试数据进行算法测试,测试结果表明了该算法的计算效率和应用前景。 This article first from the orbital transportation and the conventional transportation engagement plan angle of view, elaborated solves the K most short-path question to optimize in the public transportation wire the significance. Then most short-circuits in Dijkstra in the algorithm foundation,creatively has introduced many P sign and many T sign records the beginning to this node K short-path and the upper boundary,after makes the improvement the algorithm success to solve the K most short-path. Finally uses the C language to carry on the realization to the algorithm,and had the test data to carry on the algorithm test stochastically,the test resuit has indicated this algorithm counting yield and the application prospect.
机构地区 青岛大学
出处 《中国经济与管理科学》 2009年第4期29-31,共3页 Chinese Economy Management Science Magazine
基金 本研究得到山东省教育厅科技计划项目(No:J07WJ09)和青岛市社会科学规划研究项目(No:QDSKL070115)资助.
关键词 DIJKSTRA算法 K最短路径 公共交通 衔接规划 Dijkstra algorithm K most short-path Mass transit Engagement plan
  • 相关文献

同被引文献20

  • 1谌国森,陈晓丽.美军巡航导弹的现状及发展趋势[J].飞航导弹,2006(2):37-40. 被引量:11
  • 2李成江.新的k最短路算法[J].山东大学学报(理学版),2006,41(4):40-43. 被引量:15
  • 3张欧亚.面向Agent的巡航导弹武器控制系统分析与设计[D].西安:西北工业大学,2007.
  • 4Robert N Athay. I.oiter and optimal route planning for long rang subsonic cruise missile[D]. USA, University of Virginia, 2004.
  • 5Shibo Li, Xiuxia Sun. A real-time UAV route planning algorithm based on fuzzy logic teehniques[C]//Proceed- ings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006, China: 8750 - 8753.
  • 6Edward Minieka.网络和图的最优化算法[M].李家滢,赵关旗,译.北京:中国铁道出版社,1984.
  • 7Lars Relund Nielsena, Kim Allan Andersenb, Daniele Pretolani. Finding the K shortest hyperpaths[J]. Com- puters & Operations Research, 2005, 32 (6): 1477- 1497.
  • 8Palmgren M, Di Yuan. A short summary on K shortest path: Mgorithms and applications [EB/OL]. http://www, esc. auckland. ac. nz/Mason/Courses/LinkopingColGen99/kth. 1999,2006-01-08.
  • 9Dijkstra E W. A note in connexion with graphs [ J]. Numerische Mathematik, 1:269- 271.
  • 10Eppstein D. Finding the k shortest paths [J]. SIAM Journal on Computing, 1999, 28(2) : 652 - 673.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部