期刊文献+

伸缩杆管体超静定问题的有限元求解 被引量:1

A Finite Element Solution for the Indeterminate Problem of Telescopic Rod/Tube Penetrators
下载PDF
导出
摘要 在工程假设基础上,将伸缩杆管体简化为圆柱杆壳结构,运用商业程序对圆柱杆壳第2接触面一次超静定支撑结构进行了有限元求解,给出了应力云图和单元节点路径应力包罗线这两种分析方法。在第2接触面间隙的有限范围内,用ANSYS瞬态动力学模块求解算例,其收敛性可以得到保证。Mises应力节点路径包罗线给出了圆柱壳的危险断面,确定了发生双面支撑对应的第2接触面间隙的范围。经过进一步完善,可以为伸缩杆管体穿甲弹的发射强度提供有限元形式的工程估算方法。 The telescopic rod/tube penetrator was represented as the cylindrical shell-bar based on some engineering suppositions. By using a commercial finite-element code, a statically indeterminate problem that cylindrical shell-bar had two supported surfaces and gap exists in the second contact was solved under transient load. Two methods of stress contour and embracing graph along a predefined path through the nodes of the cylindrical shell enabled us to analyze the results. In the limited bounds of the second contact gap, solution process was astringed by using the transient dynamic module to solve an example of this problem. According to yon Mises stress embracing graphs, minimum life sections of the shell and rational bounds of gap for the penetrators could be quickly obtained. On the foundation of this work we can offer estimating techniques for the strength design of telescopic rod/tube projectile with finite-element analysis.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第4期408-414,共7页 Acta Armamentarii
基金 国家部委项目(9140C300902090C30 A2620061131)
关键词 爆炸力学 伸缩杆管体 超静定 瞬态动力学 有限元 explosion mechanics telescopic rod/tube penetrator statically indeterminate transientdynamics finite element
  • 相关文献

参考文献8

二级参考文献20

共引文献6

同被引文献13

  • 1Janarthanan B, Padmanabhan C, Sujatha C. Longitudi- nal dynamics of a tracked vehicle:simulation and ex- periment [J]. Journal of Terrameehanics, 2012, 49 (2):63-72.
  • 2Pavazza R. On the load distribution of thin-walled beams subjected to bending with respect to the cross- section distortion [J]. International Journal of Me- chanical Sciences, 2002,44 (2) : 423-442.
  • 3Tjernberg A. Load distribution in the axial direction in a spline coupling[J]. Engineering Failure Analysis, 2001,8(6) :557-570.
  • 4Birrell S A, Haslam R A. The effect of load distribu- tion within military load carriage systems on the ki- netics of human gait[J]. Applied Ergonomics, 2010, 41 (4) : 585-590.
  • 5Simon V. Load distribution in cylindrical worm gears[J]. Transactions of the ASME, 2003,125 (2) : 356-364.
  • 6Kolivand M, Kahraman A. A load distribution model for hypoid gears using ease-off topography and shell theory[J]. Mechanism and Machine Theory, 2009,44(10) : 1848-1865.
  • 7Nagatomo T,Takahashi K,Kigawa T,et al. Effects of load distribution on life of radial roller bearings[J]. Journal of Tribology, 2012,134(2) : 1-7.
  • 8Amasorrain J L, Sagartzazu X, Damian J. Load distribut- ionina four contact-point slewing bearing [J]. Mechanism and Machine Theory,2003,38(6) :479-496.
  • 9Kim J, Yoon J C, Kang B S. Finite element analysis and modeling of structure with bolted joints [J]. Ap- plied Mathematical Modeling,2007,31(5):895-911.
  • 10Yorgun C,Dalci S, Altay G A. Finite element model- ing of bolted steel connections designed by double channel[J]. Computers and Structures, 2004,82 (29/ 30):2563-2571.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部