期刊文献+

高阶齐次线性微分方程解的充满圆及其Borel方向 被引量:2

The Filling Circle and Borel Direction of Solutions of Higher Order Homogeneous Lineardifferential Equations
下载PDF
导出
摘要 研究了亚纯函数系数的高阶线性微分方程解的充满圆及其Boerel方向问题,得到了齐次高阶线性微分方程解的充满圆及其Boerel方向的两个结果. This paper deal with the filling circle and borel direction of solutions of higher order homogeneous linear differenliad equations with meromorphic function coefficent, and getting two results of filling circle and borel direction of higher ordcr homogeneous linear differenliad equations.
作者 金瑾
机构地区 毕节学院数学系
出处 《山西大同大学学报(自然科学版)》 2009年第2期1-5,7,共6页 Journal of Shanxi Datong University(Natural Science Edition)
基金 贵州省教育厅科研基金资助项目[2007079] 毕节学院科研基金资助项目[20072004]
关键词 亚纯函数系数 高阶线性微分方程 充满圆 Boerel方向 meromorphic function coefficents higher order linear differential equations filling circle borel direction
  • 相关文献

参考文献3

二级参考文献8

  • 1BANK S, LAINE I. On the oscillation theory of f″ + Af = 0 where A is entire [J]. Trans. Amer. Math. Soc., 1982, 273: 351-363.
  • 2KWON Ki-Ho. Nonexistence of finite order solutions of certain second order linear differentiM equations [J]. Kodai Math. J., 1996, 19(3): 378-387.
  • 3GAO Shi-an. Two theorems on the complex oscillation theory of nonhomogeneous linear differential equations [J]. J. Math. Anal. Appl., 1991, 162(2): 381-391.
  • 4CHEN Zong-xuan, YANG Chung-chun. Quantitative estimations on the zeros and growths of entire solutions of linear differential equations [J]. Complex Variables Theory Appl., 2000, 42(2): 119-133.
  • 5HAYMAN W. Meromorphic Functions [M]. Oxford: Clarendon Press, 1964.
  • 6陈宗煊.关于高阶整函数系数微分方程解的超级[J].应用数学学报,1999,22(1):71-77. 被引量:6
  • 7陈宗煊.二阶亚纯系数微分方程亚纯解的零点[J].数学物理学报(A辑),1996,16(3):276-283. 被引量:37
  • 8陈宗煊.二阶复域微分方程解的不动点与超级[J].数学物理学报(A辑),2000,20(3):425-432. 被引量:62

共引文献34

同被引文献23

  • 1金瑾.复方程f″+Af=0的解的零点充满圆[J].数学进展,2005,34(5):609-613. 被引量:28
  • 2陈宗煊,孙光镐.一类二阶微分方程的解和小函数的关系[J].数学年刊(A辑),2006,27(4):431-442. 被引量:29
  • 3Heittokangas J. On complex differential equations in the unit disc[J]. Ann Acad Sci Fenn Math Diss,2000,122:1-54.
  • 4Tsuji M,Potential theory in modern function theory[M]. Re- print of the 1959 edition. New York: Chelsea, 1975.
  • 5Heittokangas J, Korhonen R, R/itty/i J. Growth estimates for solutions of linear complex differential equations[J]. Ann Acad Sci Femm Math, 2004,29 : 233-246.
  • 6Chen Z X, Shon K H, The growth of solutions of differenti- al equations with coefficients of small growth in the disc [J]. J Math Anal Appl, 2004,297 : 285-304.
  • 7Cao T B, Yi H X. The growth of linear differential equa- tions with coefficients of iterated order in the unit disc[J].Math Anal Appl,2006,319:79-294.
  • 8Jin J. The hyper order of solutions of higher order linear differential equations with analytic coefficients in the unit disc[C]//Proceedings of the 5th International Congress on Mathematical Biology ( ICMB2011 ). [ S. l. ]: [ s. n. ], 2011:131-142.
  • 9石宁生,金瑾.一类微分方程的解及其解的导数与不动点的关系[M].数学的实践与认识,2011,41(22):185-190.
  • 10Jin J. The fixed point and hyper order of solutions of higher order nonhomogeneous linear differential equations with mer- omorphic function coeffeents [J]. Mechanicaland Aerospace Engineering(ICMAE2011), 2011,110 : 3297-3300.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部