摘要
同时接种好氧氨氧化污泥和厌氧氨氧化污泥启动EGSB反应器,培养完全自营养脱氮颗粒污泥,总氮去除速率达0.101kg.(m3.d)-1.基于边界层假设模拟颗粒污泥与液相主体间的传质过程,并将其与颗粒污泥内传质过程以及好氧氨氧化、厌氧氨氧化和亚硝酸盐氧化过程相耦合,建立了颗粒污泥完全自营养脱氮模型,应用实验结果对模型进行了验证.根据模拟结果对EGSB反应器运行条件进行优化,总氮平均去除效率由52%提高到61%,平均去除速率由0.103 kg.(m3.d)-1提高到0.114kg.(m3.d)-1.
An expanded granular sludge bed (EGSB) reactor inoculated simultaneously with aerobic ammonium oxidation sludge and anaerobic ammonium oxidation sludge were start-up to enrich completely autotrophic nitrogen removal granular sludge. Total nitrogen (TN) removal rate reached 0. 101 kg· (m^3·d)^-1. Based on hypothesis of boundary layer, the transfer process between granular sludge and bulk liquid was modified, which was coupled with substance transfer process in granular sludge and aerobic ammonium oxidation, anaerobic ammonium oxidation, nitrite oxidation process, and completely autotrophic nitrogen removal model was found. The model was validated with the experimental results. According to simulation results, the operation of the reactor was optimized, TN removal efficiency and TN removal rate were increased from 52 % to 61% and 0.103 kg· ( m^3·d) ^-1 to 0.114 kg· (m^3·d)^ - 1 respectively.
出处
《环境科学》
EI
CAS
CSCD
北大核心
2009年第5期1454-1460,共7页
Environmental Science
基金
国家自然科学基金项目(50378094)
关键词
完全自营养脱氮
好氧氨氧化
厌氧氨氧化
颗粒污泥
completely autotrophic nitrogen removal
aerobic ammonium oxidation
ANAMMOX
granular sludge