期刊文献+

基于SIFT特征和Fisher的人脸识别方法 被引量:7

Face Recognition Method Based on SIFT Feature and Fisher
下载PDF
导出
摘要 针对人脸识别中特征提取和特征分类问题,提出一种基于SIFT特征和Fisher鉴别的人脸识别新方法。采用具有旋转、缩放、平移、光照不变性及部分仿射不变性的SIFT特征作为初级特征,利用Fisher线性鉴别方法再次提取初级特征,从而得到样本的二次特征,通过比较二次特征之间的欧氏距离,得到识别结果。实验结果表明,新的方法具有99.65%的正确识别率,高于Fisher方法和核Fisher方法,识别速度和Fisher方法相当。 Aiming at the problem of feature extracting and feature discriminate in face recognition, this paper introduces a new method of face recognition based on Scale Invariant Feature Transform(SIFT) feature and Fisher discriminant. The SIFT, with the invariant of rotation, scale, translation and illumination, can be used as a primer feature, then it uses FLD to extract the quadratic feature, by comparing the Euripides distance of the quadratic feature. It can find fight class of the test picture. Practice illustrates that the recognition rate of new method is 99.65%, which exceeds FLD and KFLD, and the recognition speed of new method is corresponding to Fisher methed.
作者 崔世林 田斐
出处 《计算机工程》 CAS CSCD 北大核心 2009年第9期195-197,共3页 Computer Engineering
基金 河南省杰出青年科学基金资助项目(0511012900)
关键词 SIFT特征 FISHER线性鉴别 错误接受率 ADABOOST算法 Scale Invariant Feature Transform(SIFT) feature Fisher linear discriminant False Acceptance Rate(FAR) Adaboost algorithm
  • 相关文献

参考文献9

  • 1祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 2Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3Tenenbaum J B,Desilva V,Langford J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,290(55):2319-2323.
  • 4Rowes S T,Saul L K.An Introduction to Locally Linear Embedding[EB/OL].(2007-12-15).http://www.cs.toronto.edu/roweis/lle.
  • 5Belkin M,Niyogl P.Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering[EB/OL].(2008-09-02).https://epdnts.kfupm.edu.sa/47805/.
  • 6Georshiades A S,Belhurneur P N.Kriegman D J.From Few to Many:Illumination Cone Models for Face Recognition Under Variable Lighting and Pose[J].IEEE Trans.on Pattern Anal.Mach.Intelligence,2001,23(6):643-660.
  • 7David G L.Distinctive Image Feature from Scale-invariant Interest Points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8Konenderink J.The Structure of Images[J].Biological Cybemetics,1984,50(5):363-370
  • 9Viola P,Robust J M J.Real Time Face Detection[J].International Journal of Computer Vision,2004,60(2):137-154.

二级参考文献14

  • 1ZHAO W,CHELLAPPA R,PHILLIPS P J,et al.Face recognition:a literature survey[J].ACM Computing Surveys,2003,35(4):399-459.
  • 2SHAKHNAROVICH G,MOGHADDAM B.Face recognition in subspaces[M].New York:Springer-Verlag,2004.
  • 3TURK M,PENTLAND A.Eigenfaces for recognition[J].Cognitive Neuroscience,1991,3(1):71-86.
  • 4TURK M,PENTLAND A.Face recognition using eigenfaces[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Maui:IEEE,1991:586-590.
  • 5BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6FUKUNAGA K.Introduction to statistical pattern recognition[M].Boston:Academic Press,1990.
  • 7VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 8YANG M H.Kernel eigenfaces vs.kernel fisherfaces:face recognition using kernel methods[C]∥Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition.[S.l.]:IEEE,2002:215-220.
  • 9TENENBAUM J B,DE SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 10ROWEIS S T,SAUL L K.An introduction to locally linear embedding[R].[S.l.]:AT&T,2000.

共引文献10

同被引文献55

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部