期刊文献+

BK-means:骨架初始解K-means 被引量:3

BK-means:Backbone initialization K-means
下载PDF
导出
摘要 K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-means)的基本思想是:首先利用K-means算法得到一组局部最优解(聚类结果),通过对局部最优解求交得到骨架簇。利用骨架簇构造骨架初始解及新的搜索空间。最后以骨架初始解引导K-means算法在新的搜索空间中搜索聚类结果。在15组仿真数据集和4组实际数据集上的实验结果表明,BK-means算法具有获得高内聚、高分离的聚类结果能力。 K-means is one of classical heuristic clustering algorithm,which is sensitive to initialization and may not produce ideal optimal results.In recent years,the backbone(the shared common parts of all optimal solutions) has attracted many interests in heuristic algorithm design,due to its impact on improving the performance of heuristic algorithms.In this paper,a backbone initialization K-means(BK-means) algorithm is proposed.The main idea is to find out the backbone cluster which is the intersection of several local suboptimal solutions obtained by run K-means algorithm several times,then generate a backbone initialization and new search space.Finally,K-means is run again on the new search space with the backbone initialization.Experiments on 15 synthesis and 4 real datasets show that BK-means has significant effects for improving the quality of clustering.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第14期49-52,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60503003 教育部博士点基金No.20070141020 安徽省教育厅自然科学基金No.KJ2008B133,No.KJ2008B05ZC~~
关键词 聚类 K—means算法 启发式算法 骨架初始解 clustering K-means algorithm heuristic algorithm backbone initialization
  • 相关文献

参考文献17

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1077
  • 2Drinesa P,Frieze A,Kannan R,et al.Clustering large graphs via the singular value decomposition[J].Mach Learn,2004,56(1/3):9-33.
  • 3Anderberg M R.Cluster analysis for applications[M].New York:Academic Press, 1973.
  • 4MacQueen J B.Some methods for classification and analysis of multivariate observation[C]//Le Cam L M,Neyman J.Berkeley Symposium on Mathematical Statistics and Probability.[S.l.]:University of California Press, 1967:281-297.
  • 5Tou J,Gonzales R.Pattern recognition principles[M].Reading,MA: Addison Wesley, 1974.
  • 6Katsavounidis I,Kuo C C J,Zhen Z.A new initialization technique for generalized Lloyd iteration[J].Signal Process Lett IEEE,1994,1(10):144-146.
  • 7Daoud M B A,Roberts S A.New methods for the initialization of clusters[J].Pattern Recognition Lett, 1996,17 ( 5 ) : 451-455.
  • 8Khan S S,Ahmad A.Cluster center initialization algorithm for k-means clusterin[J].Pattern Recognition Lett,2004,25( 11 ): 1293-1302.
  • 9David A,Sergei V.k-means++: the advantages of careful seeding[C]// SODA, 2007:1027-1035.
  • 10Slaney J,Walsh T.Backbones in optimization and approximation[C]// Proceedings of the 17th International Joint Conference on Artificial Intelligence(IJCAI-01 ).San Francisco:Morgan Kaufman Publishers, 2001 : 254-259.

二级参考文献20

  • 1PengZou,ZhiZhou,Ying-YuWan,Guo-LiangChen,JunGu.New Meta-Heuristic for Combinatorial Optimization Problems:Intersection Based Scaling[J].Journal of Computer Science & Technology,2004,19(6):740-751. 被引量:5
  • 2邹鹏,周智,陈国良,江贺,顾钧.求解QAP问题的近似骨架导向快速蚁群算法(英文)[J].软件学报,2005,16(10):1691-1698. 被引量:15
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4[1]Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.
  • 5[2]Johnson DS, McGeoch LA. The traveling salesman problem: a case study in local optimization. In: Aarts EH, Lenstra JK, eds. Local Search in Combinatorial Optimization. New York: John Wiley and Sons, 1996.
  • 6[3]Jünger M, Reinelt G, Rinaldi G. The traveling salesman problem. In: Ball M, Magnanti T, Monma CL, Nemhauser G, eds. Handbook on Operations Research and Management Science: Networks North-Holland. 1995. 225~330.
  • 7[4]Burkard RE, Deineko VG, Dal RV, et al. Well-Solvable special cases of the traveling salesman problem: a survey. SIAM Review, 1998,40(3):496~546.
  • 8[5]Clarke G, Wright JW. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 1964,12: 568~581.
  • 9[6]Christofides N. Worst-Case analysis of a new heuristic for the traveling salesman problem. Technical Report, No.388, Pittsburgh, PA: Graduate School of Industrial Administration, Carnegie Mellon University, 1976.
  • 10[7]Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science, 1983,220(4598):671~680.

共引文献1136

同被引文献22

  • 1朱轶群.GIS与模糊数学理论在商服中心空间选址中的应用[J].地理空间信息,2006,4(1):49-51. 被引量:5
  • 2袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 3HAN Jia-wei,KAMBER M.数据挖掘概念与技术[M].2版.北京:机械工业出版社,2008:263-266.
  • 4CHEN Xin-quan,PENG Hong,HU Jing-song.K-medoids substitution clustering method and a new clustering validity index method[C] //Proc of the 6th World Congress on Intelligent Control and Automation.2006:5896-5900.
  • 5HE Zeng-you.Farthest-point heuristic based initialization methods for K-modes clustering[EB/OL].(2006-10-10).http://arxiv.org/ftp/cs/papers/0610/0610043.pdf.
  • 6PARK H S,JUN C H.A simple and fast algorithm for K-medoids clustering[J].Expert Systems with Applications,2009,36(2):3336-3341.
  • 7PARDESHI B,TOSHNIWAL D.Improved K-medoids clustering based on cluster validity index and object density[C] //Proc of the 2nd IEEE International Advance Computing Conference.2010:379-384.
  • 8GAO Dan-yang,YANG Bing-ru.An improved K-medoids clustering algorithm[C] //Proc of the 2nd International Conference on Computer and Automation Engineering(ICCAE).2010:132-135.
  • 9BARIONI C N M,RAZENTE H L,TRAINA A J M,et al.Accelerating K-medoid-based algorithms through metric access methods[J].The Journal of Systems and Software,2008,81(3):343-355.
  • 10PARTYKA J,KHAN L,THURAISINGHAM B.Semantic schema matching without shared instances[C] //Proc of IEEE International Conference on Semantic Computing.2009:297-302.

引证文献3

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部