摘要
在Hilbert空间的框架下,用一种变形的迭代格式xn+1=αnf(xn)+βnxn+γnTxn,研究一闭凸集合C上的非扩张映像的不动点问题,当满足适当的条件,且n→∞时,{xn}强收敛至T的一个不动点,并且此点也是某变分不等式的解.去掉了一些作者提出的相应条件,其结果改进了相应文献的一些近代结果.
It is introduced that a algorithm of the iterative process for nonexpansive mappings on a closed convex subset of a Hilbert space H, where x0 ∈C is arbitrary and xn+1=αnf(xn)+βnxn+γnTxn. for n≥1. It is shown that in certain appropriate conditions, when n→∞, then {xn } converge strongly to a fixed point of T, which is the solution to a variational inequality. The results have improved some recent results.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2009年第3期259-263,共5页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(No.10771141)
关键词
变形迭代序列
非扩张映像
变分不等式
不动点
modified iterative process
nonexpansive mapping
variational inequality
fixed point