期刊文献+

混沌激励下振动系统的非线性参数识别 被引量:1

Parametric identification of nonlinearity using chaotic excitation
下载PDF
导出
摘要 对基于时-频相结合的非线性振动系统的参数识别问题进行了研究。首先建立含非线性参数单自由度振动系统的力学模型,将已知非线性系统产生的混沌响应作为该系统的激励,假定其响应有若干不稳定的周期轨道组成,从混沌响应的状态空间中提取出近似周期轨道,采用谐波平衡法识别出系统的参数,然后对识别出的参数进行误差分析。最后通过数值模拟,验证了混沌信号作为激励源对非线性系统进行参数识别的可行性。 The question about parametric identification of nonlinear vibration system based on time-frequency analysis was studied.The mechanical model of a single-degree-of-freedom vibration system with nonlinear parameters was established,and the chaotic response of a known nonlinear system was used as an excitation for parametric identification.It was assumed that the system consists of several unstable periodic orbits.The approximate periodic orbits were extracted from the state space of chaotic response based on recurrence property,and the harmonic balance identification method was used to identify the parameters of nonlinear system.Then the error of identified parameters were analysed.It is indicated that using chaotic signal as driving source for identifying the nonlinear system is feasible by numerical simulation.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第5期80-83,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50675092) 甘肃省自然科学基金资助项目(0710RJZA052)
关键词 混沌激励 非线性系统 谐波平衡识别法 参数识别 chaotic excitation nonlinear system harmonic balance identification method parametric identification
  • 相关文献

参考文献10

  • 1李岳锋,胡海岩.非线性系统参数识别的能量法[J].振动工程学报,1991,4(3):34-40. 被引量:17
  • 2赵玉成,张玉莲,张亚红,许庆余.时间序列关联维数在非线性系统运动性态识别中的应用[J].航空学报,2003,24(1):28-31. 被引量:2
  • 3唐驾时.多自由度非线性系统的频域识别[J].湖南大学学报(自然科学版),1997,24(4):24-29. 被引量:3
  • 4Yuan, Feeny. Parametric identification of chaotic system[J]. Journal of Vibration and Control, 1998, 4:405 - 426.
  • 5Auerbach D. Exploring Chaotic Motion Through Periodic Orbit [J]. Phys. Rev. 1987, 58:2387-2389.
  • 6Nichols J M, Virgin L N. Systems Identification Through Chaotic Interrogation [ J]. Signal Process, 2003, 17 (4) : 871 - 881.
  • 7Yasuda K, Kawamura,S, Watnbe K. Identification of nonlinear muhi-degree-of-freedom systems [ J ]. SME-International Journal, 1988, 31 ( 1 ) :8 - 15.
  • 8Narayanan. Parametric Identification Nonlinear Systems Using Chaotic Excitation[J]. Journal of Computational and Nonlinear Dynamics,2007, 2:225 - 231.
  • 9Narayanan. Multi-harmonic Excitation For Nonlinear System Identification[ J]. Journal of sound and vibration,2008, 311 : 707 - 728.
  • 10黄文虎.近代振动系统参数识别技术的发展与展望.应用力学学报,1985,3(2):69-82.

二级参考文献11

共引文献20

同被引文献33

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部