期刊文献+

T_E(X)中局部方向保序变换半群的Green关系和正则性 被引量:4

Regularity and Green's relation for semigroups of transformations partially preserving orientation in T_E(X)
下载PDF
导出
摘要 设X为有限集合,OPPE(X)为TE(X)中局部方向保序变换半群.研究了OPPE(X)的G reen关系与正则性. Let X be a finite set, OPPE (X) are semigroups of transformations partially preserving orientation in TE (X) . This paper discusses Green' s relations and regularities of OPPE (X) .
出处 《贵州师范大学学报(自然科学版)》 CAS 2009年第2期79-82,共4页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州师范大学学生科研研究基金
关键词 局部方向保序 保等价关系 Green关系 正则性 partially preserving orientation preserving equivalence relation Green' s relations regularity
  • 相关文献

参考文献10

  • 1Howie, J. M. Fundamentals of Semigroup of Theory [ M ]. New York: Oxford University Press, 1995.
  • 2Catarina. P. M.. Monids of orientation-preserving transformations of a finite chain and preser~tations[ J]. Semigroups and Applications, 1998:39-46.
  • 3Catarina. P. M and P. M. Higgings. The monoid of orientation-preserving mapping on a chain [ J ]. Semigroup Forum, 1999,58 (2) : 190-206.
  • 4Taijie You, Xiuliang Yang. A classification of the maximal idempotent generated subsemigroups of finite singular transformation semigroups [ J ]. Semigroup Forum, 2002 , 64(2): 236 - 242.
  • 5Taijie You. Maximal regular subsemigroups of certain semigroups of transformations [ J ]. Semigroup Forum, 2002,64 (3) : 391-396.
  • 6李映辉,王守峰,张荣华.含正则*-断面的正则半群(英文)[J].西南师范大学学报(自然科学版),2006,31(5):52-56. 被引量:10
  • 7Huisheng Pei. Regularity and Green' s relations for semigroups of transformations that preserve an equivalence[ J ]. Commuineations in Algebra , 2005,33 ( 1 ) : 109-118.
  • 8Pei Huisheng, and Zou Dingyu. Green' s relations on semigroups of transformations preserving order and an equivalence relation[ J]. Semigroup Forum , 2005,71 ( 2 ) :241- 251.
  • 9Lei Sun, Huisheng Pei and Zhengxing Cheng. Regularity and Green' s relations for semigroups of transformations that preserving orientation and an equivalence[J]. Semigroup Forum ,2007,74 (3) :473-486.
  • 10李中明,喻秉钧,兰丙申,唐春艳,何碧容.嵌任意半群入2-双单半带[J].四川师范大学学报(自然科学版),2008,31(1):22-24. 被引量:3

二级参考文献14

  • 1BLYTH T S, MCFADDEN R B. Regular Semigroups with a Multiplicative Inverse Transversal [J]. Proc Roy Soc. Edinburgh, 1982, 92(A): 253-270.
  • 2LI Yong-hua. A Class of Semigroups with Regular *-transversals [J]. Semigroup Forum, 2002, 65:43-57.
  • 3SAITO T. Structure of Regular Semigroups with a Quasi-Ideal Inverse Transversal [J]. Semigroup Forum, 1985, 31:305-309.
  • 4NORDAHL T E, SCHEIBLICH H E. Regular *-semigroups [J]. Semigroup Forum, 1978, 16:369-377.
  • 5HOWIE J M. An Introduction to Semigroup Theory [M]. London: Academic Press, 1976.
  • 6Howie J M. The subsemigroup generated by the idempotents of a full transformation semigroup[ J ]. J London Math Soc, 1966,41 : 707-716.
  • 7Pastijn F. Embedding semigroups in semibands[ J ]. Semigroup Forum, 1977,14:247-163.
  • 8Byleen K. Regular four-spiral semigroups, idempotent-generated semigroups and the Rees construction [ J ]. Semigroup Forum, 1981,22:97-100.
  • 9Giraldes E, Howie J M. Embedding finite semigroups in finite semibands of minimal depth[J]. Semigroup Forum,1984,28:135-142.
  • 10Howie J M. Fundamentals of Semigroup Theory [ M ]. Oxford: Clarendon Press, 1995.

共引文献11

同被引文献25

  • 1李映辉,王守峰,张荣华.含正则*-断面的正则半群(英文)[J].西南师范大学学报(自然科学版),2006,31(5):52-56. 被引量:10
  • 2J M Howie and R B McFadden.Idempotent rank in finite full transformation semigruops[J].Proc,Royal Soc.Edinburgh A,1990(114):161-167.
  • 3Pei Huisheng.On the Rank of the Semigroup TE(X)[J].Semigroup Forum,2005,70:107-117.
  • 4Catarina P M.Monids of orientation-preserving transformations of a finite chain and presentations[C].Semigroups and Applications,J.M.Howie and Nik Ruskuc,Eds,World Scientific Press,Singapore,1998:39-46.
  • 5Vitor H.Fernanades.The monoid of all injective orientation preserving partial transformation semigroup[J].Com in Algebra,2000,28(7):3041-3426.
  • 6J M Howie.Fundamentals of Semigroup of Theory[M].London:Oxford Press,1995.
  • 7P M Catarina and P M Higgings.The monoid of orientation-preserving mapping on a chain[J].Semigroup Forum,1999(58):190-206.
  • 8Pei Huisheng.Regularity and green' s relation for semigroup of transformations that preserve an equivalence[J].Semigroup Forum,2005,33:109-118.
  • 9GOMES G M S, HOWIE J M . On the ranks of certain semigroups of order - preserving transformations [ J ]. Sem- igroup Forum, 1992 (45) :272 - 282.
  • 10CATARINA P M. Monids of orrentation - preserving trans- formations of a finite of a finite chain and presentations [ C ]// Semigroups and Applications. HOWIE J M , Nik Ruskus, Eds. , Word Scientific Press, Singapore, 1998 : 39 - 46.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部