摘要
研究具有非负Gauss曲率的2维非紧完备黎曼流形上的共形Gauss曲率方程,证明了共形Gauss曲率方程的一般解的存在性与径向对称解的存在性的等价性,得到了涉及共形Gauss曲率方程的径向对称解在无穷远处增长率的一个结果.
The conformal Gaussian curvature equation on the 2 - dimensional noncompact complete Riemannian manifolds with nonnegative Gaussian curvatures is investigated, the equivalence between the existence of general solutions and that of the radially symmetric solutions is proved, and a result dealing with the growth rate at infinity of the radially symmetric solutions of the conformal Gaussian curvature equation is obtained.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第3期217-221,共5页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家"973"计划资助项目(2004CB318000)
浙江省教育厅科研资助项目(20051289)
关键词
2维完备流形
共形形变
Gauss曲率方程
2 - dimensional complete manifold
Conformal deformation
Gaussian curvature equation