摘要
利用改进和优化传统遗传算法的选择策略、搜索空间,自适应调整交叉率和变异率提高了计算效率,并在遗传进化过程中用优秀个体群来逐步缩小搜索空间,提出了求解饲料配方设计问题的一种改进方法(GA+).应用该方法对3个经典非线性测试函数进行了仿真,在收敛速度和全局优化方面好于现有的遗传算法.结果表明,GA+较好地保持了种群的多样性,精度高、收敛速度快,对求解饲料配方设计问题非常有效.
An improved method (GA + ) for feed formulation design is presented. Computational efficiency is increased by improving and optimizing the traditional genetic algorithm selection strategy, search space, adaptive crossover rate and mutation rate, and adopting excellent individual group to reduce the search space in genetic evolution process. Application of the method to emulation experiment with three classic nonlinear functions, it shows that the convergence speed and global optimization are better than the ones in traditional genetic algorithm. The result shows that GA + does well in maintaining the population diversity, high precision, fast convergence speed, and is very effective in solving design problems of feed formulation.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第3期242-246,共5页
Journal of Yunnan University(Natural Sciences Edition)
基金
云南省科技攻关项目(云计科技[98]253号)资助
关键词
遗传算法
优化
配方设计
计算效率
genetic algorithm
optimization
feed formulation design
computational efficiency