期刊文献+

一种基于边缘幅值分布的相关跟踪算法 被引量:1

A Novel Correlation Tacking Algorithm Based on Edge Amplitude Distribution of Target
下载PDF
导出
摘要 针对空中目标的跟踪环境提出一种边缘幅值分布的相关跟踪算法,利用目标的边缘幅值分布作为目标的特征模板,通过求取当前帧中目标特征与目标特征模板相关系数的最优解来进行目标跟踪。与采用对称核函数的均值迁移目标跟踪算法相比,采用目标边缘点作为核函数中的样本点,参与计算的样本点为核窗口中样本的5%~10%,使图像处理速度达到了50帧/s以上,满足了实时跟踪的要求。在跟踪过程中,以目标相邻帧间特征向量的Bhattacharyya相关系数作为目标特征模板的更新判据,实验中相邻帧间目标特征向量的Bhattacharyya系数保持在0.95~1.0,满足模板实时更新的要求,为稳定跟踪提供了保障。 A real-time correlation tracking algorithm, based on edge amplitude distribution, is presented to solve the aerial object tracking problem. We use the edge amplitude distribution histogram to express the target and track the target by computing the best correlation between the object model and the current object. The traditional mean shift algorithm requires a symmetric kernel, such as a circle or a rectangle, and assumes that the target's scale is symmetric during the course of tracking. The pixels are used on the edge as the samples, about 5% to 10% of the total pixels in the kernel. The object model is updated by computing the Bhattacharyya coefficient. The experimental results show that the Bhattacharyya coefficient during the course of tracking keeps between 0.95 and 1.0, and algorithm runs well at 50 fps.
出处 《光电工程》 CAS CSCD 北大核心 2009年第5期28-33,共6页 Opto-Electronic Engineering
基金 "985"工程学科建设投资项目(107008200400020)
关键词 目标跟踪 边缘幅值分布 均值迁移算法 BHATTACHARYYA系数 object tracking edge amplitude distribution mean shift algorithm Bhattacharyya coefficient
  • 相关文献

参考文献10

  • 1Cheng Y. Mean shift, mode seeking and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0018-9340), 1995, 17(8): 790-799.
  • 2Comaniciu D, Meer P. Mean shift, a robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0018-9340), 2002, 24(5): 603-619.
  • 3Comaniciu D, Ramesh V, Meer E Real time tracking of non-rigid objects using mean shift [C]//Proc. 2000 IEEE International Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, June 13-15, 2000, 2: 142-149.
  • 4Comaniciu D. An algorithm for data-driven bandwidth selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0018-9340), 2003, 25(2): 281-288.
  • 5WEN Zhi-qiang, CAI Zi-xing. Mean Shift Algorithm and its Application in Tracking of Objects [C]//Proc. 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, Aug 13-16, 2006: 4024-4028.
  • 6Bradski G R. Computer Video Face Tracking for use in a Perceptual User Interface [C]//IEEE Workshop on Applications of Computer Vision, Stoughton: Printing House, 1998: 214-219.
  • 7Nouar O D, Ali G, Raphael C. Improved Object Tracking with Camshift Algorithm [C]//Proe. 2006 IEEE International ConfereneeonAeousties, Speech andSignalProcessing, Toulouse, France, May 14-19, 2006, 2: Ⅱ.
  • 8Yilmaz Alper. Object Tracking by Asymmetric Kernel Mean Shift With Automatic Scale and Orientation Selection [C]//Computer Vision and Pattern Reeognition, CVPR'07, Minneapolis, MN, June 17-22, 2007: 1-6.
  • 9Canny J. A Computational Approach to Edge Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1986, 8(6): 679-698.
  • 10周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59

二级参考文献38

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3王兆虎,刘芳,焦李成.一种基于视觉特性的遥感图像分割[J].计算机学报,2005,28(10):1686-1691. 被引量:10
  • 4Fukunaga K,Hostetler L D.The estimation of the gradient of a density function with applications in pattern recognition[J].IEEE Trans on Information Theory,1975,21(1):32-40.
  • 5Cheng Y Z.Mean shift,mode seeking,and clustering[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 6Comaniciu D,Meer P.Mean shift analysis and applications[C].Proc of the IEEE Int Conf on Computer Vision.Kerkyra,1999:1197-1203.
  • 7Comaniciu D,Meer P.Distribution free decomposition of multivariate data[J].Pattern Analysis and Applications,1999,2(1):22-30.
  • 8Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C],Proc of the IEEE Conf on Computer Vision and Pattern Recognition.Hilton Head Island,2000:142-149.
  • 9Comaniciu D,Ramesh V,Meer P.The variable bandwidth mean shift and data-driven scale selection[C].Proc of the IEEE Int Conf on Computer.Vision.Vancouver,2001:438-445.
  • 10Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.

共引文献58

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部