摘要
针对传统常模盲均衡算法存在的收敛到局部极小值点问题,提出一种基于人工免疫网络的盲均衡算法,把均衡器系数向量作为抗体,经过一系列抗体克隆、变异和抑制等操作,搜索到适应度值最高的抗体,即均衡器的最优系数。仿真实验结果表明,该算法是有效的。
Aiming at the problem of convergence to local minima in traditional blind equalization algorithm, a new blind equalization algorithm based on artificial immune network is presented. The coefficient vector of a blind equalizer is regarded as the antibodies and the optimal solutions can be obtained by replication, mutation and suppression. Simulation experimental results show this algorithm is effective.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第10期196-197,200,共3页
Computer Engineering
基金
国家部委基金资助项目
关键词
人工免疫网络
盲均衡
免疫优化
artificial immune network
blind equalization
immune optimization