期刊文献+

基于改进模糊神经网络的电力系统短期负荷预测

Short-term load forecasting in power system based on improved fuzzy neuro net
下载PDF
导出
摘要 提出了基于改进聚类算法的模糊神经网络的短期负荷预测方法。首先,利用改进聚类算法确定模糊神经网络的结构,然后利用混合学习算法训练该网络的前件和结论参数,最后向训练好的模糊神经网络输入相关的影响因素数据进行预测。预测结果显示,改进的模糊神经网络可以获得较高的预测精度,所以有更好的使用价值。 An improved fuzzy neuro net based on T-S model is presented in this paper.Firstly,the structure of fuzzy neuro net(FNN)is decided by improved clustering,then the primise parameters and consequent parameters of FNN are trained by hybrid learning algorithm,finally related data are input into the trained FNN to forecast electricity load.The results show that this method can obtain higher forecasting accuracy,so it has more value.
作者 杨华芬
出处 《长春工程学院学报(自然科学版)》 2009年第1期68-71,共4页 Journal of Changchun Institute of Technology:Natural Sciences Edition
关键词 T-S模糊神经网络 可能性聚类算法 改进聚类算法 短期负荷预测 T-S fuzzy neuro net KPCM improved clustering short-term load forecasting
  • 相关文献

参考文献15

  • 1魏东,张明廉,支谨.神经网络非线性预测优化控制及仿真研究[J].系统仿真学报,2005,17(3):697-700. 被引量:18
  • 2Gerhec D,Gasperlc S,Smon I,et al.An approach to customers daily load profile determination[J].IEEE Power Engineering Society Summer Meeting,Chicago,IL,USA,Piscataway:NJ,2002,1:587-593.
  • 3Papadakis S E,Theocharis J B,Bakirtzis A G.A bad curve based fuzzy modeling technique for short-term load forecasting[J].Fuzzy Sets and Systems,2003,135(02):279-303.
  • 4Krishnapuram R,Keller J M.A Possibillstic Approach to Clustering[J].IEEE Transaction on Fuzz Systems,1993,(02):98-110.
  • 5Bami M,Cappellini V,Mecocci A.Comments on A Poasi-bilistie Approach to Clustering[J].On Fuzzy Systems,1996,4(03):393-396.
  • 6Schneider A.weighted Poasibilistic Clustering Algorithms[J].In:Proc.ofthe 9th IEEE Int'l Conf.on Fuzzy Sys-tems.Texas:IEEE,2000,(01):176-180.
  • 7张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 8Yang MS,Wu KL,Yu J.Anovelfuzzy clustefingalgorithm[J].Kobe:Proceeding of the 2003 IEEE Int'l Syrup on Computational Intelligence in Robotics and Automation,2003,2:647-652.
  • 9Chiu S L.Fuzzy model identification based on cluster esti-mation[J].Journal of Intelligent and Fuzzy Systems.1994,2(03):267-278.
  • 10Mark Cirolami.Mercer kernel-based clustering in featurespace[J].IEEE Tram on Neural Networks,2002,13:780-784.

二级参考文献21

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 3王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 4Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 5苗夺谦,博士学位论文,1997年
  • 6陆汝钤,人工智能,1996年
  • 7Wong S K M,Bull Polish Acad Sci,1985年,33卷,693页
  • 8Bryson A E. Dynamic Optimization [M]. Menlo Park, CA:Addison-Wesley-Longman, 1999.
  • 9Carlos R G, Miguel V R. Decoupled Control of Temperature and Relative Humidity Using a Variable-Air-Volume HVAC System and Non-interacting Control [A]. Proceedings of the 2001 IEEE Internationai Conference on Control Applications [C]. Mexico City,Mexico: 2001, 1147-1151.
  • 10Seong C, Widrow B. Neural Dynamic Optimization for Control Systems-Part II, Theory [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(4): 490-501.

共引文献1134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部