期刊文献+

两种进化算法在BSS中的应用比较 被引量:2

The Application and Comparison of Two Evolution Algorithm in Blind Source Separation
下载PDF
导出
摘要 介绍了两种分别引入遗传算法和免疫算法的盲源分离方法.通过仿真比较试验表明,两种算法对混叠信号的分离都有效,但基于免疫算法的分离效果都优于基于遗传算法的分离结果. Two blind source separation (BSS) algorithms, based on Genetics Algorithm (GA) and Immune Algorithm (IA), are introduced. The simulation comparison Test indicates that they are effective at the separation of mixed signals. The comparison of two algorithms indicates that IA is better than GA at separate effect.
作者 王昆 张伟
出处 《西安文理学院学报(自然科学版)》 2009年第2期36-39,共4页 Journal of Xi’an University(Natural Science Edition)
关键词 盲源分离 遗传算法 免疫算法 blind source separation genetics glgorithm immune algorithm
  • 相关文献

参考文献5

二级参考文献38

  • 1[2]Cardoso J F.Blind beamforming for non-Gaussian signals[J].IEE Proceedigns-F,1993,140(6):362-370.
  • 2[3]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transaction on Neural Networks,1999,10(3):626-634.
  • 3[4]Amari S,Cichocki A,Yang H H.A new learning algorithms for blind signal separateion[J].Neural Information Processing Systems,1996,8:757-763.
  • 4[5]Yang H H,Amari S I,Cichocki A.Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutal information[J].Neural Computation,1997,7(9):1457-1482.
  • 5[6]Cardoso J F,Laheld B.Equivariant adaptive source separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017-3030.
  • 6[8]Common P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314.
  • 7[9]Cao X R,Liu R W.General approach to blind source separateon[J].IEEE Transactions on Signal Processing,1996,44(3):562-571.
  • 8[10]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129-1159.
  • 9[12]Douglas S C,Cichocki A.Adaptive step-size techniques for decorrelation and blind source separateon[A].Proceedings of the Asilomar conference on Signals,Systems and Computers,Pacific Grove,CA[C],1998,2:1191-1195.
  • 10Yang H H, Amari S. Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation, 1997, 9(5): 1457 - 1482.

共引文献24

同被引文献14

  • 1Jing Jianping, Meng Guang. A novel method for mul- ti-fault diagnosis of rotor system[J]. Mechanism and Machine Theory, 2009, 44(4): 697-709.
  • 2Hy#arinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans- actions on Neural Networks, 1999, 10(3):626-634.
  • 3Shi Gang, Jing Yuanwei. Research of improved im- mune clonal algorithms and its applications[C]//CIM- SA 2009-International Conference on Computational Intelligence for Measurement Systems and Applica- tions, IEEE Computer Society, United States: IEEE Comouter Societv, 2009.
  • 4戴或虹 袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2000..
  • 5Kim D, Choi H, Bae H. Acoustic echo cancellation usingblind source separation [ C ] //IEEE Workshop on SignalProcessing Systems, 2003 : 241 -243.
  • 6Low S Y,Nordholm S. A blind approach to joint noiseand acoustic echo cancellation [ C ] Proceedings ofIEEE International Conference on Acoustics,Speech,andSignal Processing, 2005 : 69 -72.
  • 7Zhang Z L,Yi Z. An efficient independent component a-nalysis algorithm for sub-Gaussian sources [ J ]. Advancesin Neural Network ,2005 ,3496 : 967-972.
  • 8廖章珍,陈强.人工免疫系统的基本理论及其应用[J].自动化与仪器仪表,2008(1):5-8. 被引量:7
  • 9石庆斌,马建仓.盲源分离在机械振动信号分析中的应用[J].测控技术,2008,27(5):78-80. 被引量:9
  • 10张金玉,黄先祥,谢伟达.机械信号处理的BSS算法及其比较研究[J].振动工程学报,2008,21(4):409-416. 被引量:8

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部