期刊文献+

极坐标下基于差分统计的描述器算法 被引量:1

The Algorithm of Descriptor Based on Differential Histograms Under Polar Coordinates
下载PDF
导出
摘要 特征描述器在许多机器视觉任务中有着重要的应用。为了提高特征描述器的性能,在极坐标下设计出了一种新的特征描述器——小波差分统计描述器(harr wavelet differential histograms,HWDH)。该描述器算法先把选定的特征区域分成9个小区域;接着分别对小区域进行小波变换;然后算出对应的方向差分,同时用改进的尺度适应性二阶矩矩阵来选择特征点的主方向;最后在极坐标下,对每个小区域的差分,在相应的方向条目内进行统计。与其他基于统计的描述器相比,该算法不需要对特征区域进行旋转,即可减少统计误差。经与尺度不变特征变换(SIFT)的描述器的实验比较表明,该描述器在鲁棒性和速度性能上都很好。 Descriptor of features point is vital application of many computer vision tasks. Therefore, this paper presents a novel algorithm to design the descriptor of image feature points based on differential histograms under polar coordinates (HWDH). Firstly, the neighbor area of feature point is divided into nine small patches. Then, Gradient differential is produced by harr wavelet on every small patch and a dominant direction of the feature point is computed by Scale Adapted Harris detector which is improved. Lastly, histogram is generated from the differential statistic. In contrast to other descriptor based on differential histograms, the description generated by our algorithm needn' t to rotate in the around area of feature point. Therefore, it can deduce the error from statistic. Moreover, the comparative experiments illustrated that the proposed algorithm is more rapid and accurate than SIFT.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第5期961-966,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60604007) 重庆市自然科学基金项目(CSTC2005BA2002)
关键词 尺度不变特征变换 主方向 描述器 scale-invariant feature transform(SIFT) , dominant directions, descriptor
  • 相关文献

参考文献8

  • 1Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1615-1630.
  • 2Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
  • 3Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets[ A]. In: Processings of the 7th European Conference on Computer Vision[ C] , Copenhagen, Denmark: 2002:414-431.
  • 4Lowe D G. Distinctive image features from local scale-invariant keypoints[ J ] . International Journal of Computer Vision, 2004, 2(60) : 91-110.
  • 5Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[ A ]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[ C ], Washington, D C, USA, 2004. 511-517.
  • 6Mortensen E N, Deng H, Shapiro L. A SIFT descriptor with global context[ A ]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [ C ], San Diego, CA, USA, 2005 : 184-190.
  • 7Grabber M, Grabber H, B isehof H. Fast approximated SIFT[ A]. In: Proceedings of Asian Conference on Computer Vision [ C ], Hyderabad, India,2006 : 918-927.
  • 8Mikolajczyk K,Schmid C. Scale and Affine Invariant Interest Point Detectors[ J ] . International Journal of Computer Vision, 2004, 60(1) :63-86.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部