期刊文献+

裂叶沙参个体生长动态研究(1)——一个生长季地上部分的生长 被引量:2

STUDY ON THE INDIVIDUAL GROWTH DYNAMIC OF ADENOPHORA LOBOPHYLLA ——GROWTH DYNAMIC IN ONE GROWING SEASON
下载PDF
导出
摘要 在不同生境条件下的固定样地内,观察分析了裂叶沙参种群的地上部分在一个生长季的生长过程和物候特点。生长于灌木群落下,裂叶沙参地上部分生物量生长(y,g)与时间(x,d)的关系可以用公式:y=0.2872-0.0187x+0.0009x2表示;地上各器官茎、叶、花枝、花芽、花和果的生物量(y,克)与生长时间(x,天)的关系可以用公式:y=b0+b1x+b2x2表示。从4月10日到8月15日的速生期间,地上各器官总生物量(B,克)与生长时间(A,天)的关系可用逻辑斯蒂方程:B=0.99/(1+e^(3.613-0.149A))表示。茎和花枝的生物量(B,克)与生长时间(A,天)关系可用通式:B=K/(1+e^(c-rm.A))表示。与生长于开阔草本群落中个体相比,生长在落叶多刺灌丛群落下的裂叶沙参个体生长开始时间(物候)晚,结束生长时间早。 In the fixed sample plot at different habitats, the growing process of an endangered species, Adenophora lobophylla Hong population was observed. The regulation of the adult individual growth and phenological characteristics was studied. The relation between time (x, day) and the total growth of biomass above ground (y,g) could be expressed: y=0.2872-0.0187x+0.0009x 2, and the relations between time (x, day) and the growth of biomass (y,g) of every organs such as branch, leaf, flower branch, flower bud, flower and fruit could be expressed by the general equation: y=b 0+b 1x+b 2x 2. During the time of rapid growth from April 10 to August 15, the relation between time (A, day) and the growth of total biomass of all organs above ground (B. g) could be expressed by Logistic equation: B=0.99/(1+e ^(3.613-0.149A)); the relations between time (A, day) and the growth of biomass (B,g) of stem, flower branch could be expressed: B=K/(1+e ^(c-r m.A)). The regulation of growth of individual in the deciduous thorny shrub community were compared with that in grass (drought-resistant) community. The individual in the open grass community begins its growth (phenology) later and ends its growth earlier than that under shrub community.
出处 《植物研究》 CAS CSCD 北大核心 1998年第1期118-118,共1页 Bulletin of Botanical Research
基金 国家自然科学基金"八五"重大项目
关键词 裂叶沙参 个体生长 物候学 Adenophora lobophylla Individual growth phenology Logistic equation Endangered species
  • 相关文献

同被引文献39

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部