期刊文献+

涉及微分多项式的亚纯函数正规性 被引量:3

Normality of meromorphic functions with differential polynomial
下载PDF
导出
摘要 研究了涉及微分多项式的亚纯函数的正规性.继承Schwick的思想将正规族与分担值联系起来,对一族亚纯函数中函数与该函数微分多项式分担值的情况进行研究,得出亚纯函数的正规性.已知定理:设F为区域D上的全纯函数族,k为正整数,a,b,c和d为有穷复数,b≠0,c≠0且b≠a,若对f∈F,f-d的零点重级至少为k,f=0■f(k)=a且f(k)=b■f=c.则F在D上正规.本文将这个定理推广到亚纯函数情形,并且将f(k)用f的微分多项式来代替,结论仍成立. The normality of the linear combinations, whose coefficients are analytic functions on D,of the derivatives of a meromorphic function on D was studied. The main idea is to extend Schwick's ideas to make the normal family link to the shared values, by studying the function from a family of meromorphic functions, that share values with a differential polynomial of this function, to abtain the normality of the meromorphic functions. It already has proved:Let F be a family of holomorphic functions on a domain D, k a positive integer, a, b, c and d finite complex values with ,b≠0,c≠0, b≠a. If for each f ∈F,all the zeros of f- d are of multiplicity at least k ,such that f = 0=〉f^(k) = a and f^(k) = b=〉f = c, then F is normal on the domain D. By using an analogue to above theorem for meromorphic functions, and replacing the function f^(k) with a differential polynomial of f, a normal criterion was proved.
出处 《上海理工大学学报》 CAS 北大核心 2009年第2期122-124,共3页 Journal of University of Shanghai For Science and Technology
关键词 亚纯函数 微分多项式 正规族 分担值 meromorphic function differential polynomial normality shared value
  • 相关文献

参考文献2

二级参考文献1

共引文献103

同被引文献23

  • 1陈怀惠,方明亮.关于f^nf'的值分布[J].中国科学(A辑),1995,25(2):121-127. 被引量:39
  • 2Li Jiangtao,Yi Hongxun.NORMAL FAMILIES AND SHARED VALUES OF HOLOMORPHIC FUNCTIONS[J].Applied Mathematics(A Journal of Chinese Universities),2006,21(3):335-342. 被引量:10
  • 3杨乐.正规族与微分多项式.中国科学:A辑,1983,(1):21-32.
  • 4Yang L. The normality of meromorphic fuctions[J]. Science in China(Seris A), 1986,29(9) : 897 - 908.
  • 5Zhu J H. A general normal criterion of meromorphic functions[J]. Bullen of Science (Chinese), 1986 (3) : 174- 177.
  • 6Xu Y. On a result due to Yang and Schwick[J]. Sci Sin Math, 2010,40 (5) : 421 - 428.
  • 7Zalcman L. Normal families: new perspectives[J]. Bull Amer Math Soc, 1998,35(3) :215 - 230.
  • 8Hayman W K. Meromorphic Functions [M]. Oxford: Clarendon Press, 1964.
  • 9Pang X C, Zalcman L. Normal families and shared values [J]. Bull London Math Soc,2000,32(3) :325 - 331.
  • 10Pang X C, Zalcman L. Normality and shared values [J].Arkiv for Matematik, 2000,38 (1) : 171 - 182.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部