期刊文献+

基于人类行走模型的步态特征提取方法研究 被引量:3

RESEARCH ON GAIT FEATURE EXTRACTING METHODS BASED ON HUMAN WALKING MODEL
下载PDF
导出
摘要 步态分析与评价是人类保健和康复的重要研究内容,运动学分析方法是步态分析中最有效最准确最直接的方法,因而被广泛采用。步态特征的提取是运动学分析方法的关键技术,也是进一步进行步态分析的基础。首先给出了人类行走的三维模型,接着提出一套从人类行走的运动学数据中提取相关步态特征的方法,包括步态周期特征和脚印特征的提取方法,最后对20到60岁年龄段的44个人的运动学数据进行分析,实验结果证明这套方法具有很高的准确性和实用性。 Gait analysis and evaluation is one of important focuses in human health and rehabilitation, kinematics analysis method is the most effective, accurate and direct way in gait analysis, so it has been used extensively. Gait feature extracting is the key technology of kinematics analysis method, and also is the foundation to further gait analysis. In this paper it firstly presents a three-dimension model of human walking, and then provides a set of gait feature extracting methods based on the data of kinematics, including gait cycle feature and footprint feature extracting methods. Finally, the kinematics data of 44 individuals, 20-60 age old, are analyzed. The experimental results show that these methods are of high accuracy and practicality.
出处 《计算机应用与软件》 CSCD 2009年第5期198-201,217,共5页 Computer Applications and Software
关键词 人类行走模型 步态特征提取 周期特征 脚印特征 Human walking model Gait feature extraction Cycle feature Footprint feature
  • 相关文献

参考文献7

  • 1Niyogi S, Adelson E. Analyzing and recognizing walking figures in XYT [ R ]. Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994:469 - 474.
  • 2Cunado D, Nixon M, Carter J. Using gait as a biometric, via phase- weighted magnitude spectra[ R]. Proc International Conference on Audio-and Video-based Biometric Person Authentication,Crans-Montana, Switzerland, 1997:95 - 102.
  • 3Yoo J H, Nixon M, Harris C J. Extracting human gait signatures by body segment properties. In : Proc. of IEEE Southwest Symposium on Image Analysis and Interpretation. 2002:35 - 39.
  • 4Lily Lee. Gait Analysis for Classification [ R ]. AI Technical Report 2003 -014, Massachusetts Institute of Technology-artificial Intelligence Laboratory,2003.
  • 5刘玉栋,苏开娜,马丽.一种基于模型的步态识别方法[J].计算机工程与应用,2005,41(9):88-92. 被引量:16
  • 6Zhang Rong, Vogler C, Metaxas D. Human gait recognition [ J ]. Computer Vision and Pattern Recognition ,2004,27 ( 2 ) : 18 - 20.
  • 7Bofeng Zhang, Takehiro Kanno, Wenxi Chen, et al. Walking stability age- A Feature Analysis Based on a Fourteen Linkage Model. In: 7th IEEE International Conference on Computer and Information Technology, 2007 : 16 - 19,145 - 150.

二级参考文献11

  • 1耿超,苏开娜,段娟.人群分裂后的人体运动跟踪[J].计算机工程,2005,31(8):165-167. 被引量:2
  • 2Claudette Cedras,Mubarak Shah. A survey of motion analysis from moving light displays[C].In:Proc 1994 IEEE Conf on Computer Vision and Pattern Rec,IEEE Press, 1994:214~221
  • 3J M Nash,J N Carter,M S Nixon. Extracting moving articulated objects by evidence gathering[C].In:Proc BMVC 98,1998-09:609~618
  • 4M R Dawson.Gait Recogniton Final Report.Meng Computing 4,Department of Computing Imperial College of Science,Technology &Medicine ,London,SW7 2BZ ,2002-06
  • 5M P Murray. Gait as a total pattern of movement[J].American Journal of Physical Medicine, 1967 ;46-1:290~333
  • 6G Johansson. Visual perception of biological motion and a model for its analysis[J].Perception and Psychophysics, 1973; 14(2)
  • 7J H Yoo,M S Nixon,C J Harris. Extracting Human Gait Signatures by Body Segment Properties. Department of Electronics and Computer Science University of Southampton ,UK
  • 8J Litfle,J E Boyd. Reeognizing People by Their Gait:the Shape of Motion[J].Journal of Computer Vision Research, 1998; 1 (2): 2~32
  • 9D Cunado,M S Nixon,J N Carter. Using gait as a biometrie,via phaseweighted magnitude spectra[C].In:Leeture Notes in Computer Science Proc AVBPA'97,1997; 1206:95~102
  • 10L Lee,W E L Grimson. Gait Analysis for Recognition and Classifieafion[C].In :Proceeding of the IEEE Conference on Face and Gesture Recognition, 2002:155~161

共引文献15

同被引文献29

  • 1吴建宁,王珏.采用支持向量机评估老年人步态对称性的研究[J].西安交通大学学报,2007,41(8):995-999. 被引量:8
  • 2丁玉兰.人机工程学[M].北京:北京理工大学出版社,1999..
  • 3Collins R T, Gross R, Shi J. Si.lhouette-based human identification from body shape and gait. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, USA, 2002. 366 -371.
  • 4Johnson A Y, Bobick A F. A multi-view method for gait recognition using static body parameters. In: Proceedings of the 3rd International Conference on Audio-and Video- Based Biometric Person Authentication. Halmstad, Swe- den, 2001. 301-311.
  • 5Phillips P J, Sarkar S, Robledo I, et al. The gait identi- fication challenge problem: data sets and baseline algo- rithm. In: Proceedings of the 16th International Confer- ence on Pattern Recognition, 2002, 1 : 385-388. doi : 10.1109/ICPR. 2002. 1047410.
  • 6STURMAN D J. A brief history of motion capture for computer character animation [ C] //Proc of SIGGRAPH'94, 1994: 365 - 372.
  • 7HUNGERFORD B, GILLEARD W, LEE D. Altered patterns of pelvic pain using skin markers [J]. Clinical Biomechanics. 2004 (9) : 456 - 464.
  • 8MIKI H, SUGANO N, HAGIO K. Recovery of walking speed and symmetrical movement of the pelvis and lower extremity joints after unilateral THA [ J ]. Journal of Biomeehanics,2004 ( 37 ) : 443 - 455.
  • 9LAMONTAGNE A, DE SERRES S J, FUNG J. Stroke affects the coordination and stabilization of head, thorax and pelvis dur- ing voluntary horizontal head motions performed in walking[ J ]. Clinical Neurophysiology, 2005 (116) : 10I - 111.
  • 10黄飞跃,徐光祐.视角无关的动作识别[J].软件学报,2008,19(7):1623-1634. 被引量:14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部