期刊文献+

一类半线性抛物型方程的协调有限元法

Conforming Finite Element Method for a Type of Semi-linear Parabolic Equations
下载PDF
导出
摘要 主要讨论了一类二阶半线性抛物型方程,研究它在半离散下的Galerkin协调有限元法,借用Riesz投影的性质和其他一些新的估算方法,最后得到了真解和近似解之间在L2范数下的误差估计. A type of second-order semi-linear parabolic equation was discussed. The Galerkin finite element methods under the semi-discrete situation for the discussed problem were researched. By means of the Riesz projection and other new methods for calculation and estimation, some error estimates in L^2 between the real solution and the approximate solution were obtained.
出处 《合肥学院学报(自然科学版)》 2009年第2期6-8,共3页 Journal of Hefei University :Natural Sciences
关键词 抛物型方程 半线性 半离散 GALERKIN法 误差估计 parabolic equations semi-linear semi-discrete Galerkin method error estimation
  • 相关文献

参考文献6

二级参考文献36

  • 1Xiong Yuanbo,Long Shuyao,Hu De'an,Li Guangyao.A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS[J].Acta Mechanica Solida Sinica,2005,18(4):348-356. 被引量:9
  • 2张晓梅,姜子文.一维抛物问题的H^1-Galerkin混合元方法[J].山东科学,2007,20(3):1-5. 被引量:2
  • 3胡健伟 汤怀民.微分方程数值解法[M].北京:科学出版社,1999..
  • 4Daubechies I.Ten lecture on wavelets,Regional Conference Series in Applied Mathematics[M],SIAM,Phliadelpha,1992,61.
  • 5Beylkin G.On the Representation od Operators in Bases od Compactly Supported Wavelets[J].SIAM J.Numer.Anal.,1992,6:1716-1740.
  • 6Qian S and Weiss J.Wavelets and the Numerical solution of partial differential equations[J],Journal of Computational Physics,1993,106:155-175.
  • 7Alpert B,Beylkin G,Gines D and Vozovoi L.Adaptive solution of partial differential equations in multiwavelet bases[J].Journal of Computational Physics,2002,182:149-190.
  • 8Cockburn B and Shu C.The local discontinuous Galerkin method for time-depended convection-diffusion systems[J],SIAM J.Numer.Anal.,1998,35(6):2440-2463.
  • 9Chevaugeon N,Xin J,Hu P,Li X,Cler D,Flaherty J E and Shephard M S.Discontinuous Galerkin Methods Applied to Shock and Blast Problems[J].Journal of Scientific Computing,2005,2:227-243.
  • 10Chen Z,Micchelli C A and Xu Y.A multilevel method for solving operator equations[J],J.Math.Appl.,2002,262:688-699.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部